Statistical State Dynamics Based Study of the Role of Nonlinearity in the Maintenance of Turbulence in Couette Flow


Abstract in English

While linear non-normality underlies the mechanism of energy transfer from the externally driven flow to the perturbation field that sustains turbulence, nonlinearity is also known to play an essential role. The goal of this study is to better understand the role of nonlinearity in sustaining turbulence. The method used in this study is implementation in Couette flow of a statistical state dynamics (SSD) closure at second order in a cumulant expansion of the Navier-Stokes equations in which the averaging operator is the streamwise mean. The perturbations are the deviations from the streamwise mean and two mechanisms potentially contributing to maintaining these perturbations are identified. These are parametric perturbation growth arising from interaction of the perturbations with the fluctuating mean flow and transient growth of perturbations arising from nonlinear interaction between components of the perturbation field. By the method of comparing the turbulence maintained in the SSD and in the associated direct numerical simulation (DNS) in which these mechanisms have been selectively included and excluded, parametric growth is found to maintain the perturbation field of the turbulence while the more commonly invoked mechanism of transient growth of perturbations arising from scattering by nonlinear interaction is found to suppress perturbation growth. In addition to verifying that the parametric mechanism maintains the perturbations in DNS it is also verified that the Lyapunov vectors are the structures that dominate the perturbation energy and energetics in DNS. It is further verified that these vectors are responsible for maintaining the roll circulation that underlies the self-sustaining process (SSP) and in particular the maintenance of the fluctuating streak that supports the parametric perturbation growth.

Download