Do you want to publish a course? Click here

Observations on continued fractions

233   0   0.0 ( 0 )
 Added by Alexander Aycock
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

This is a translation of Eulers Latin paper De fractionibus continuis observationes into English. In this paper Euler describes his theory of continued fractions. He teaches, how to transform series into continued fractions, solves the Riccati-Differential equation by means of continued fractions and finds many other interesting formulas and results (e.g, the continued fraction for the quotient of two hypergeometric series usually attributed to Gau{ss})



rate research

Read More

We introduce a notion of $q$-deformed rational numbers and $q$-deformed continued fractions. A $q$-deformed rational is encoded by a triangulation of a polygon and can be computed recursively. The recursive formula is analogous to the $q$-deformed Pascal identitiy for the Gaussian binomial coefficients, but the Pascal triangle is replaced by the Farey graph. The coefficients of the polynomials defining the $q$-rational count quiver subrepresentations of the maximal indecomposable representation of the graph dual to the triangulation. Several other properties, such as total positivity properties, $q$-deformation of the Farey graph, matrix presentations and $q$-continuants are given, as well as a relation to the Jones polynomial of rational knots.
We adjust Arnouxs coding, in terms of regular continued fractions, of the geodesic flow on the modular surface to give a cross section on which the return map is a double cover of the natural extension for the alpha-continued fractions, for each $alpha$ in (0,1]. The argument is sufficiently robust to apply to the Rosen continued fractions and their recently introduced alpha-variants.
134 - Lulu Fang , Lei Shang 2016
Large and moderate deviation principles are proved for Engel continued fractions, a new type of continued fraction expansion with non-decreasing partial quotients in number theory.
120 - Guo-Niu Han 2019
The Euler numbers occur in the Taylor expansion of $tan(x)+sec(x)$. Since Stieltjes, continued fractions and Hankel determinants of the even Euler numbers, on the one hand, of the odd Euler numbers, on the other hand, have been widely studied separately. However, no Hankel determinants of the (mixed) Euler numbers have been obtained and explicitly calculated. The reason for that is that some Hankel determinants of the Euler numbers are null. This implies that the Jacobi continued fraction of the Euler numbers does not exist. In the present paper, this obstacle is bypassed by using the Hankel continued fraction, instead of the $J$-fraction. Consequently, an explicit formula for the Hankel determinants of the Euler numbers is being derived, as well as a full list of Hankel continued fractions and Hankel determinants involving Euler numbers. Finally, a new $q$-analog of the Euler numbers $E_n(q)$ based on our continued fraction is proposed. We obtain an explicit formula for $E_n(-1)$ and prove a conjecture by R. J. Mathar on these numbers.
We compare two families of continued fractions algorithms, the symmetrized Rosen algorithm and the Veech algorithm. Each of these algorithms expands real numbers in terms of certain algebraic integers. We give explicit models of the natural extension of the maps associated with these algorithms; prove that these natural extensions are in fact conjugate to the first return map of the geodesic flow on a related surface; and, deduce that, up to a conjugacy, almost every real number has an infinite number of common approximants for both algorithms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا