Text-to-image Synthesis via Symmetrical Distillation Networks


Abstract in English

Text-to-image synthesis aims to automatically generate images according to text descriptions given by users, which is a highly challenging task. The main issues of text-to-image synthesis lie in two gaps: the heterogeneous and homogeneous gaps. The heterogeneous gap is between the high-level concepts of text descriptions and the pixel-level contents of images, while the homogeneous gap exists between synthetic image distributions and real image distributions. For addressing these problems, we exploit the excellent capability of generic discriminative models (e.g. VGG19), which can guide the training process of a new generative model on multiple levels to bridge the two gaps. The high-level representations can teach the generative model to extract necessary visual information from text descriptions, which can bridge the heterogeneous gap. The mid-level and low-level representations can lead it to learn structures and details of images respectively, which relieves the homogeneous gap. Therefore, we propose Symmetrical Distillation Networks (SDN) composed of a source discriminative model as teacher and a target generative model as student. The target generative model has a symmetrical structure with the source discriminative model, in order to transfer hierarchical knowledge accessibly. Moreover, we decompose the training process into two stages with different distillation paradigms for promoting the performance of the target generative model. Experiments on two widely-used datasets are conducted to verify the effectiveness of our proposed SDN.

Download