No Arabic abstract
Multispectral pedestrian detection has attracted increasing attention from the research community due to its crucial competence for many around-the-clock applications (e.g., video surveillance and autonomous driving), especially under insufficient illumination conditions. We create a human baseline over the KAIST dataset and reveal that there is still a large gap between current top detectors and human performance. To narrow this gap, we propose a network fusion architecture, which consists of a multispectral proposal network to generate pedestrian proposals, and a subsequent multispectral classification network to distinguish pedestrian instances from hard negatives. The unified network is learned by jointly optimizing pedestrian detection and semantic segmentation tasks. The final detections are obtained by integrating the outputs from different modalities as well as the two stages. The approach significantly outperforms state-of-the-art methods on the KAIST dataset while remain fast. Additionally, we contribute a sanitized version of training annotations for the KAIST dataset, and examine the effects caused by different kinds of annotation errors. Future research of this problem will benefit from the sanitized version which eliminates the interference of annotation errors.
Multimodal information (e.g., visible and thermal) can generate robust pedestrian detections to facilitate around-the-clock computer vision applications, such as autonomous driving and video surveillance. However, it still remains a crucial challenge to train a reliable detector working well in different multispectral pedestrian datasets without manual annotations. In this paper, we propose a novel unsupervised domain adaptation framework for multispectral pedestrian detection, by iteratively generating pseudo annotations and updating the parameters of our designed multispectral pedestrian detector on target domain. Pseudo annotations are generated using the detector trained on source domain, and then updated by fixing the parameters of detector and minimizing the cross entropy loss without back-propagation. Training labels are generated using the pseudo annotations by considering the characteristics of similarity and complementarity between well-aligned visible and infrared image pairs. The parameters of detector are updated using the generated labels by minimizing our defined multi-detection loss function with back-propagation. The optimal parameters of detector can be obtained after iteratively updating the pseudo annotations and parameters. Experimental results show that our proposed unsupervised multimodal domain adaptation method achieves significantly higher detection performance than the approach without domain adaptation, and is competitive with the supervised multispectral pedestrian detectors.
Pedestrian detection in a crowd is a challenging task due to a high number of mutually-occluding human instances, which brings ambiguity and optimization difficulties to the current IoU-based ground truth assignment procedure in classical object detection methods. In this paper, we develop a unique perspective of pedestrian detection as a variational inference problem. We formulate a novel and efficient algorithm for pedestrian detection by modeling the dense proposals as a latent variable while proposing a customized Auto Encoding Variational Bayes (AEVB) algorithm. Through the optimization of our proposed algorithm, a classical detector can be fashioned into a variational pedestrian detector. Experiments conducted on CrowdHuman and CityPersons datasets show that the proposed algorithm serves as an efficient solution to handle the dense pedestrian detection problem for the case of single-stage detectors. Our method can also be flexibly applied to two-stage detectors, achieving notable performance enhancement.
Object detection in natural scenes can be a challenging task. In many real-life situations, the visible spectrum is not suitable for traditional computer vision tasks. Moving outside the visible spectrum range, such as the thermal spectrum or the near-infrared (NIR) images, is much more beneficial in low visibility conditions, NIR images are very helpful for understanding the objects material quality. In this work, we have taken images with both the Thermal and NIR spectrum for the object detection task. As multi-spectral data with both Thermal and NIR is not available for the detection task, we needed to collect data ourselves. Data collection is a time-consuming process, and we faced many obstacles that we had to overcome. We train the YOLO v3 network from scratch to detect an object from multi-spectral images. Also, to avoid overfitting, we have done data augmentation and tune hyperparameters.
Self-supervised detection and segmentation of foreground objects aims for accuracy without annotated training data. However, existing approaches predominantly rely on restrictive assumptions on appearance and motion. For scenes with dynamic activities and camera motion, we propose a multi-camera framework in which geometric constraints are embedded in the form of multi-view consistency during training via coarse 3D localization in a voxel grid and fine-grained offset regression. In this manner, we learn a joint distribution of proposals over multiple views. At inference time, our method operates on single RGB images. We outperform state-of-the-art techniques both on images that visually depart from those of standard benchmarks and on those of the classical Human3.6M dataset.
Pedestrian detection has achieved great improvements with the help of Convolutional Neural Networks (CNNs). CNN can learn high-level features from input images, but the insufficient spatial resolution of CNN feature channels (feature maps) may cause a loss of information, which is harmful especially to small instances. In this paper, we propose a new pedestrian detection framework, which extends the successful RPN+BF framework to combine handcrafted features and CNN features. RoI-pooling is used to extract features from both handcrafted channels (e.g. HOG+LUV, CheckerBoards or RotatedFilters) and CNN channels. Since handcrafted channels always have higher spatial resolution than CNN channels, we apply RoI-pooling with larger output resolution to handcrafted channels to keep more detailed information. Our ablation experiments show that the developed handcrafted features can reach better detection accuracy than the CNN features extracted from the VGG-16 net, and a performance gain can be achieved by combining them. Experimental results on Caltech pedestrian dataset with the original annotations and the improved annotations demonstrate the effectiveness of the proposed approach. When using a more advanced RPN in our framework, our approach can be further improved and get competitive results on both benchmarks.