Do you want to publish a course? Click here

Randomized Hamiltonian Monte Carlo as Scaling Limit of the Bouncy Particle Sampler and Dimension-Free Convergence Rates

69   0   0.0 ( 0 )
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

The Bouncy Particle Sampler is a Markov chain Monte Carlo method based on a nonreversible piecewise deterministic Markov process. In this scheme, a particle explores the state space of interest by evolving according to a linear dynamics which is altered by bouncing on the hyperplane tangent to the gradient of the negative log-target density at the arrival times of an inhomogeneous Poisson Process (PP) and by randomly perturbing its velocity at the arrival times of an homogeneous PP. Under regularity conditions, we show here that the process corresponding to the first component of the particle and its corresponding velocity converges weakly towards a Randomized Hamiltonian Monte Carlo (RHMC) process as the dimension of the ambient space goes to infinity. RHMC is another piecewise deterministic non-reversible Markov process where a Hamiltonian dynamics is altered at the arrival times of a homogeneous PP by randomly perturbing the momentum component. We then establish dimension-free convergence rates for RHMC for strongly log-concave targets with bounded Hessians using coupling ideas and hypocoercivity techniques.

rate research

Read More

Markov Chain Monte Carlo (MCMC) is a powerful method for drawing samples from non-standard probability distributions and is utilized across many fields and disciplines. Methods such as Metropolis-Adjusted Langevin (MALA) and Hamiltonian Monte Carlo (HMC), which use gradient information to explore the target distribution, are popular variants of MCMC. The Sequential Monte Carlo (SMC) sampler is an alternative sampling method which, unlike MCMC, can readily utilise parallel computing architectures and also has tuning parameters not available to MCMC. One such parameter is the L-kernel which can be used to minimise the variance of the estimates from an SMC sampler. In this letter, we show how the proposal used in the No-U-Turn Sampler (NUTS), an advanced variant of HMC, can be incorporated into an SMC sampler to improve the efficiency of the exploration of the target space. We also show how the SMC sampler can be optimized using both a near-optimal L-kernel and a Hamiltonian proposal
We present a method for performing Hamiltonian Monte Carlo that largely eliminates sample rejection for typical hyperparameters. In situations that would normally lead to rejection, instead a longer trajectory is computed until a new state is reached that can be accepted. This is achieved using Markov chain transitions that satisfy the fixed point equation, but do not satisfy detailed balance. The resulting algorithm significantly suppresses the random walk behavior and wasted function evaluations that are typically the consequence of update rejection. We demonstrate a greater than factor of two improvement in mixing time on three test problems. We release the source code as Python and MATLAB packages.
161 - Ajay Jasra , Kody J. H. Law , 2021
This position paper summarizes a recently developed research program focused on inference in the context of data centric science and engineering applications, and forecasts its trajectory forward over the next decade. Often one endeavours in this context to learn complex systems in order to make more informed predictions and high stakes decisions under uncertainty. Some key challenges which must be met in this context are robustness, generalizability, and interpretability. The Bayesian framework addresses these three challenges, while bringing with it a fourth, undesirable feature: it is typically far more expensive than its deterministic counterparts. In the 21st century, and increasingly over the past decade, a growing number of methods have emerged which allow one to leverage cheap low-fidelity models in order to precondition algorithms for performing inference with more expensive models and make Bayesian inference tractable in the context of high-dimensional and expensive models. Notable examples are multilevel Monte Carlo (MLMC), multi-index Monte Carlo (MIMC), and their randomized counterparts (rMLMC), which are able to provably achieve a dimension-independent (including $infty-$dimension) canonical complexity rate with respect to mean squared error (MSE) of $1/$MSE. Some parallelizability is typically lost in an inference context, but recently this has been largely recovered via novel double randomization approaches. Such an approach delivers i.i.d. samples of quantities of interest which are unbiased with respect to the infinite resolution target distribution. Over the coming decade, this family of algorithms has the potential to transform data centric science and engineering, as well as classical machine learning applications such as deep learning, by scaling up and scaling out fully Bayesian inference.
106 - Vivekananda Roy 2019
Markov chain Monte Carlo (MCMC) is one of the most useful approaches to scientific computing because of its flexible construction, ease of use and generality. Indeed, MCMC is indispensable for performing Bayesian analysis. Two critical questions that MCMC practitioners need to address are where to start and when to stop the simulation. Although a great amount of research has gone into establishing convergence criteria and stopping rules with sound theoretical foundation, in practice, MCMC users often decide convergence by applying empirical diagnostic tools. This review article discusses the most widely used MCMC convergence diagnostic tools. Some recently proposed stopping rules with firm theoretical footing are also presented. The convergence diagnostics and stopping rules are illustrated using three detailed examples.
Continuous time Hamiltonian Monte Carlo is introduced, as a powerful alternative to Markov chain Monte Carlo methods for continuous target distributions. The method is constructed in two steps: First Hamiltonian dynamics are chosen as the deterministic dynamics in a continuous time piecewise deterministic Markov process. Under very mild restrictions, such a process will have the desired target distribution as an invariant distribution. Secondly, the numerical implementation of such processes, based on adaptive numerical integration of second order ordinary differential equations is considered. The numerical implementation yields an approximate, yet highly robust algorithm that, unlike conventional Hamiltonian Monte Carlo, enables the exploitation of the complete Hamiltonian trajectories (hence the title). The proposed algorithm may yield large speedups and improvements in stability relative to relevant benchmarks, while incurring numerical errors that are negligible relative to the overall Monte Carlo errors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا