Do you want to publish a course? Click here

Development of low radioactivity photomultiplier tubes for the XMASS-I detector

75   0   0.0 ( 0 )
 Added by Xmass Publications
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

XMASS-I is a single-phase liquid xenon detector whose purpose is direct detection of dark matter. To achieve the low background requirements necessary in the detector, a new model of photomultiplier tubes (PMTs), R10789, with a hexagonal window was developed based on the R8778 PMT used in the XMASS prototype detector. We screened the numerous component materials for their radioactivity. During development, the largest contributions to the reduction of radioactivity came from the stem and the dynode support. The glass stem was exchanged to the Kovar alloy one and the ceramic support were changed to the quartz one. R10789 is the first model of Hamamatsu Photonics K. K. that adopted these materials for low background purposes and provided a groundbreaking step for further reductions of radioactivity in PMTs. Measurements with germanium detectors showed 1.2$pm$0.3 mBq/PMT of $^{226}$Ra, less than 0.78 mBq/PMT of $^{228}$Ra, 9.1$pm$2.2 mBq/PMT of $^{40}$K, and 2.8$pm$0.2 mBq/PMT of $^{60}$Co. In this paper, the radioactive details of the developed R10789 are described together with our screening methods and the components of the PMT.



rate research

Read More

We successfully developed a new photomultiplier tube (PMT) with a three-inch diameter, convex-shaped photocathode, R13111. Its prominent features include good performance and ultra-low radioactivity. The convex-shaped photocathode realized a large photon acceptance and good timing resolution. Low radioactivity was achieved by three factors: (1) the glass material was synthesized using low-radioactive-contamination material; (2) the photocathode was produced with $^{39}$K-enriched potassium; and (3) the purest grade of aluminum material was used for the vacuum seal. As a result each R13111 PMT contains only about 0.4 mBq of $^{226}$Ra, less than 2 mBq of $^{238}$U, 0.3 mBq of $^{228}$Ra, 2 mBq of $^{40}$K and 0.2 mBq of $^{60}$Co. We also examined and resolved the intrinsic leakage of Xe gas into PMTs that was observed in several older models. We thus succeeded in developing a PMT that has low background, large angular acceptance with high collection efficiency, good timing resolution, and long-term stable operation. These features are highly desirable for experiments searching for rare events beyond the standard model, such as dark matter particle interactions and neutrinoless double beta decay events.
We report the measurement of the emission time profile of scintillation from gamma-ray induced events in the XMASS-I 832 kg liquid xenon scintillation detector. Decay time constant was derived from a comparison of scintillation photon timing distributions between the observed data and simulated samples in order to take into account optical processes such as absorption and scattering in liquid xenon. Calibration data of radioactive sources, $^{55}$Fe, $^{241}$Am, and $^{57}$Co were used to obtain the decay time constant. Assuming two decay components, $tau_1$ and $tau_2$, the decay time constant $tau_2$ increased from 27.9 ns to 37.0 ns as the gamma-ray energy increased from 5.9 keV to 122 keV. The accuracy of the measurement was better than 1.5 ns at all energy levels. A fast decay component with $tau_1 sim 2$ ns was necessary to reproduce data. Energy dependencies of $tau_2$ and the fraction of the fast decay component were studied as a function of the kinetic energy of electrons induced by gamma-rays. The obtained data almost reproduced previously reported results and extended them to the lower energy region relevant to direct dark matter searches.
237 - K. Abe , K. Hieda , K. Hiraide 2013
The XMASS project aims to detect dark matter, pp and $^{7}$Be solar neutrinos, and neutrinoless double beta decay using ultra pure liquid xenon. The first phase of the XMASS experiment searches for dark matter. In this paper, we describe the XMASS detector in detail, including its configuration, data acquisition equipment and calibration system.
Photomultiplier tubes (PMTs) are often used in low-background particle physics experiments, which rely on an excellent response to single-photon signals and stable long-term operation. In particular, the Hamamatsu R11410 model is the light sensor of choice for liquid xenon dark matter experiments, including XENONnT. The same PMT model was also used for the predecessor, XENON1T, where issues affecting its long-term operation were observed. Here, we report on an improved PMT testing procedure which ensures optimal performance in XENONnT. Using both new and upgraded facilities, we tested 368 new PMTs in a cryogenic xenon environment. We developed new tests targeted at the detection of light emission and the degradation of the PMT vacuum through small leaks, which can lead to spurious signals known as afterpulses, both of which were observed in XENON1T. We exclude the use of 26 of the 368 tested PMTs and categorise the remainder according to their performance. Given that we have improved the testing procedure, yet we rejected fewer PMTs, we expect significantly better PMT performance in XENONnT.
Thin flexible sheets of high-permeability FINEMET foils encased in thin plastic layers have been used to shield various types of 20-cm-diameter photomultiplier tubes from ambient magnetic fields. In the presence of the Earths magnetic field this type of shielding is shown to increase the collection efficiency of photoelectrons and can improve the uniformity of response of these photomultiplier tubes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا