Do you want to publish a course? Click here

Multipliers, Covers and Stem Extensions for Lie Superalgebras

102   0   0.0 ( 0 )
 Added by Wende Liu
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

Suppose that the underlying field is of characteristic different from $2, 3$. In this paper we first prove that the so-called stem deformations of a free presentations of a finite-dimensional Lie superalgebra $L$ exhaust all the maximal stem extensions of $L$, up to equivalence of extensions. Then we prove that multipliers and covers always exist for a Lie superalgebra and they are unique up to Lie superalgebra isomorphisms. Finally, we describe the multipliers, covers and maximal stem extensions of Heisenberg superalgebras of odd centers and model filiform Lie superalgebras.



rate research

Read More

In this paper, we introduce the notion Lie-derivation. This concept generalizes derivations for non-Lie Leibniz algebras. We study these Lie-derivations in the case where their image is contained in the Lie-center, call them Lie-central derivations. We provide a characterization of Lie-stem Leibniz algebras by their Lie-central derivations, and prove several properties of the Lie algebra of Lie-central derivations for Lie-nilpotent Leibniz algebras of class 2. We also introduce ${sf ID}_*-Lie$-derivations. A ${sf ID}_*-Lie$-derivation of a Leibniz algebra G is a Lie-derivation of G in which the image is contained in the second term of the lower Lie-central series of G, and that vanishes on Lie-central elements. We provide an upperbound for the dimension of the Lie algebra $ID_*^{Lie}(G)$ of $ID_*Lie$-derivation of G, and prove that the sets $ID_*^{Lie}(G)$ and $ID_*^{Lie}(G)$ are isomorphic for any two Lie-isoclinic Leibniz algebras G and Q.
We consider the extension problem for Lie algebroids over schemes over a field. Given a locally free Lie algebroid Q over a scheme (X,O), and a sheaf of finitely generated Lie O-algebras L, we determine the obstruction to the existence of extensions 0 --> L --> E --> Q --> 0, and classify the extensions in terms of a suitable Lie algebroid hypercohomology group. In the preliminary sections we study free Lie algebroids and recall some basic facts about Lie algebroid hypercohomology.
210 - Wei Bai , Wende Liu 2013
Suppose the ground field to be algebraically closed and of characteristic different from $2$ and $3$. All Heisenberg Lie superalgebras consist of two sup
In this paper we attempt to investigate the super-biderivations of Lie superalgebras. Furthermore, we prove that all super-biderivations on the centerless super-Virasoro algebras are inner super-biderivations. Finally, we study the linear super commuting maps on the centerless super-Virasoro algebras.
129 - Yang Liu , Wende Liu 2018
In this paper, all (super)algebras are over a field $mathbb{F}$ of characteristic different from $2, 3$. We construct the so-called 5-sequences of cohomology for central extensions of a Lie superalgebra and prove that they are exact. Then we prove that the multipliers of a Lie superalgebra are isomorphic to the second cohomology group with coefficients in the trivial module for the Lie superalgebra under consideration.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا