Do you want to publish a course? Click here

Achieving Heisenberg-scaling precision with projective measurement on single photons

80   0   0.0 ( 0 )
 Added by Geng Chen
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

It has been suggested that both quantum superpositions and nonlinear interactions are important resources for quantum metrology. However, to date the different roles that these two resources play in the precision enhancement are not well understood. Here, we experimentally demonstrate a Heisenberg-scaling metrology to measure the parameter governing the nonlinear coupling between two different optical modes. The intense mode with n (more than 10^6 in our work) photons manifests its effect through the nonlinear interaction strength which is proportional to its average photon-number. The superposition state of the weak mode, which contains only a single photon, is responsible for both the linear Hamiltonian and the scaling of the measurement precision. By properly preparing the initial state of single photon and making projective photon-counting measurement, the extracted classical Fisher information (FI) can saturate the quantum FI embedded in the combined state after coupling, which is ~ n^2 and leads to a practical precision ~ 1.2/n. Free from the utilization of entanglement, our work paves a way to realize Heisenberg-scaling precision when only a linear Hamiltonian is involved.

rate research

Read More

Improving the precision of measurements is a significant scientific challenge. The challenge is twofold: first, overcoming noise that limits the precision given a fixed amount of a resource, N, and second, improving the scaling of precision over the standard quantum limit (SQL), 1/sqrt{N}, and ultimately reaching a Heisenberg scaling (HS), 1/N. Here we present and experimentally implement a new scheme for precision measurements. Our scheme is based on a probe in a mixed state with a large uncertainty, combined with a post-selection of an additional pure system, such that the precision of the estimated coupling strength between the probe and the system is enhanced. We performed a measurement of a single photons Kerr non-linearity with an HS, where an ultra-small Kerr phase of around 6 *10^{-8} rad was observed with an unprecedented precision of around 3.6* 10^{-10} rad. Moreover, our scheme utilizes an imaginary weak-value, the Kerr non-linearity results in a shift of the mean photon number of the probe, and hence, the scheme is robust to noise originating from the self-phase modulation.
We generalize past work on quantum sensor networks to show that, for $d$ input parameters, entanglement can yield a factor $mathcal O(d)$ improvement in mean squared error when estimating an analytic function of these parameters. We show that the protocol is optimal for qubit sensors, and conjecture an optimal protocol for photons passing through interferometers. Our protocol is also applicable to continuous variable measurements, such as one quadrature of a field operator. We outline a few potential applications, including calibration of laser operations in trapped ion quantum computing.
It was suggested in Ref. [Phys. Rev. Lett. 114, 170802] that optical networks with relatively inexpensive overhead---single photon Fock states, passive optical elements, and single photon detection---can show significant improvements over classical strategies for single-parameter estimation, when the number of modes in the network is small (n < 7). A similar case was made in Ref. [Phys. Rev. Lett. 111, 070403] for multi-parameter estimation, where measurement is instead made using photon-number resolving detectors. In this paper, we analytically compute the quantum Cramer-Rao bound to show these networks can have a constant-factor quantum advantage in multi-parameter estimation for even large number of modes. Additionally, we provide a simplified measurement scheme using only single-photon (on-off) detectors that is capable of approximately obtaining this sensitivity for a small number of modes.
73 - Jiahao Huang , Min Zhuang , Bo Lu 2018
Spin cat states are promising candidates for quantum-enhanced measurement. Here, we analytically show that the ultimate measurement precision of spin cat states approaches the Heisenberg limit, where the uncertainty is inversely proportional to the total particle number. In order to fully exploit their metrological ability, we propose to use the interaction-based readout for implementing phase estimation. It is demonstrated that the interaction-based readout enables spin cat states to saturate their ultimate precision bounds. The interaction-based readout comprises a one-axis twisting, two $frac{pi}{2}$ pulses, and a population measurement, which can be realized via current experimental techniques. Compared with the twisting echo scheme on spin squeezed states, our scheme with spin cat states is more robust against detection noise. Our scheme may pave an experimentally feasible way to achieve Heisenberg-limited metrology with non-Gaussian entangled states.
We propose a quantum fitting scheme to estimate the magnetic field gradient with $N$-atom spins preparing in W state, which attains the Heisenberg-scaling accuracy. Our scheme combines the quantum multi-parameter estimation and the least square linear fitting method to achieve the quantum Cram{e}r-Rao bound (QCRB). We show that the estimated quantity achieves the Heisenberg-scaling accuracy. In single parameter estimation with assumption that the magnetic field is strictly linear, two optimal measurements can achieve the identical Heisenberg-scaling accuracy. Proper interpretation of the super-Heisenberg-scaling accuracy is presented. The scheme of quantum metrology combined with data fitting provides a new method in fast high precision measurements.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا