Do you want to publish a course? Click here

Asymmetric Schottky Contacts in Bilayer MoS2 Field Effect Transistors

79   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We discuss the high-bias electrical characteristics of back-gated field-effect transistors with CVD-synthesized bilayer MoS2 channel and Ti Schottky contacts. We find that oxidized Ti contacts on MoS2 form rectifying junctions with ~0.3 to 0.5 eV Schottky barrier height. To explain the rectifying output characteristics of the transistors, we propose a model based on two slightly asymmetric back-to-back Schottky barriers, where the highest current arises from image force barrier lowering at the electrically forced junction, while the reverse current is due to Schottky-barrier limited injection at the grounded junction. The device achieves a photo responsivity greater than 2.5 AW-1 under 5 mWcm-2 white-LED light. By comparing two- and four-probe measurements, we demonstrate that the hysteresis and persistent photoconductivity exhibited by the transistor are peculiarities of the MoS2 channel rather than effects of the Ti/MoS2 interface.



rate research

Read More

The observed performances of carbon nanotube field effect transistors are examined using first-principles quantum transport calculations. We focus on the nature and role of the electrical contact of Au and Pd electrodes to open-ended semiconducting nanotubes, allowing the chemical contact at the surface to fully develop through large-scale relaxation of the contacting atomic configuration. We present the first direct numerical evidence of Pd contacts exhibiting perfect transparency for hole injection as opposed to that of Au contacts. Their respective Schottky barrier heights, on the other hand, turn out to be fairly similar for realistic contact models. These findings are in general agreement with experimental data reported to date, and show that a Schottky contact is not merely a passive ohmic contact but actively influences the device I-V behavior.
Monolayer transition metal dichalcogenides (TMD) have numerous potential applications in ultrathin electronics and photonics. The exposure of TMD based devices to light generates photo-carriers resulting in an enhanced conductivity, which can be effectively used, e.g., in photodetectors. If the photo-enhanced conductivity persists after removal of the irradiation, the effect is known as persistent photoconductivity (PPC). Here we show that ultraviolet light (wavelength = 365 nm) exposure induces an extremely long-living giant PPC (GPPC) in monolayer MoS2 (ML-MoS2) field-effect transistors (FET) with a time constant of ~30 days. Furthermore, this effect leads to a large enhancement of the conductivity up to a factor of 107. In contrast to previous studies in which the origin of the PPC was attributed to extrinsic reasons such as trapped charges in the substrate or adsorbates, we unambiguously show that the GPPC arises mainly from the intrinsic properties of ML-MoS2 such as lattice defects that induce a large amount of localized states in the forbidden gap. This finding is supported by a detailed experimental and theoretical study of the electric transport in TMD based FETs as well as by characterization of ML-MoS2 with scanning tunneling spectroscopy, high-resolution transmission electron microscopy, and photoluminescence measurements. The obtained results provide a basis towards the defect-based engineering of the electronic and optical properties of TMDs for device applications.
We report on the fabrication and characterization of synthesized multiwall MoS2 nanotube (NT) and nanoribbon (NR) field-effect transistors (FETs). The MoS2 NTs and NRs were grown by chemical transport, using iodine as a transport agent. Raman spectroscopy confirms the material as unambiguously MoS2 in NT, NR, and flake forms. Transmission electron microscopy was used to observe cross sections of the devices after electrical measurements and these were used in the interpretation of the electrical measurements allowing estimation of the current density. The NT and NR FETs demonstrate n-type behavior, with ON/OFF current ratios exceeding 10^3, and with current densities of 1.02 {mu}A/{mu}m, and 0.79 {mu}A/{mu}m at VDS = 0.3 V and VBG = 1 V, respectively. Photocurrent measurements conducted on a MoS2 NT FET, revealed short-circuit photocurrent of tens of nanoamps under an excitation optical power of 78 {mu}W and 488 nm wavelength, which corresponds to a responsivity of 460 {mu}A/W. A long channel transistor model was used to model the common-source characteristics of MoS2 NT and NR FETs and was shown to be consistent with the measured data.
Recent discoveries of the photoresponse of molybdenum disulfide (MoS2) have shown the considerable potential of these two-dimensional transition metal dichalcogenides for optoelectronic applications. Among the various types of photoresponses of MoS2, persistent photoconductivity (PPC) at different levels has been reported. However, a detailed study of the PPC effect and its mechanism in MoS2 is still not available, despite the importance of this effect on the photoresponse of the material. Here, we present a systematic study of the PPC effect in monolayer MoS2 and conclude that the effect can be attributed to random localized potential fluctuations in the devices. Notably, the potential fluctuations originate from extrinsic sources based on the substrate effect of the PPC. Moreover, we point out a correlation between the PPC effect in MoS2 and the percolation transport behavior of MoS2. We demonstrate a unique and efficient means of controlling the PPC effect in monolayer MoS2, which may offer novel functionalities for MoS2-based optoelectronic applications in the future.
125 - S. Krompiewski 2007
In this study, a model of a Schottky-barrier carbon nanotube field- effect transistor (CNT-FET), with ferromagnetic contacts, has been developed. The emphasis is put on analysis of current-voltage characteristics as well as shot (and thermal) noise. The method is based on the tight-binding model and the non- equilibrium Greens function technique. The calculations show that, at room temperature, the shot noise of the CNT FET is Poissonian in the sub-threshold region, whereas in elevated gate and drain/source voltage regions the Fano factor gets strongly reduced. Moreover, transport properties strongly depend on relative magnetization orientations in the source and drain contacts. In particular, one observes quite a large tunnel magnetoresistance, whose absolute value may exceed 50%.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا