Do you want to publish a course? Click here

Riesz transform under perturbations via heat kernel regularity

60   0   0.0 ( 0 )
 Added by Renjin Jiang
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

Let $M$ be a complete non-compact Riemannian manifold. In this paper, we derive sufficient conditions on metric perturbation for stability of $L^p$-boundedness of the Riesz transform, $pin (2,infty)$. We also provide counter-examples regarding in-stability for $L^p$-boundedness of Riesz transform.



rate research

Read More

93 - Li Chen 2015
We study the $L^p$ boundedness of Riesz transform as well as the reverse inequality on Riemannian manifolds and graphs under the volume doubling property and a sub-Gaussian heat kernel upper bound. We prove that the Riesz transform is then bounded on $L^p$ for $1 textless{} p textless{} 2$, which shows that Gaussian estimates of the heat kernel are not a necessary condition for this.In the particular case of Vicsek manifolds and graphs, we show that the reverse inequality does not hold for $1 textless{} p textless{} 2$. This yields a full picture of the ranges of $pin (1,+infty)$ for which respectively the Riesz transform is $L^p$ -bounded and the reverse inequality holds on $L^p$ on such manifolds and graphs. This picture is strikingly different from the Euclidean one.
172 - Zhijie Fan , Michael Lacey , Ji Li 2021
We establish the necessary and sufficient conditions for those symbols $b$ on the Heisenberg group $mathbb H^{n}$ for which the commutator with the Riesz transform is of Schatten class. Our main result generalises classical results of Peller, Janson--Wolff and Rochberg--Semmes, which address the same question in the Euclidean setting. Moreover, the approach that we develop bypasses the use of Fourier analysis, and can be applied to characterise that the commutator is of the Schatten class in other settings beyond Euclidean.
A classical result of Aubin states that the constant in Moser-Trudinger-Onofri inequality on $mathbb{S}^{2}$ can be imporved for furnctions with zero first order moments of the area element. We generalize it to higher order moments case. These new inequalities bear similarity to a sequence of Lebedev-Milin type inequalities on $mathbb{S}^{1}$ coming from the work of Grenander-Szego on Toeplitz determinants (as pointed out by Widom). We also discuss the related sharp inequality by a perturbation method.
71 - Richard H Bamler 2020
In this paper we establish new geometric and analytic bounds for Ricci flows, which will form the basis of a compactness, partial regularity and structure theory for Ricci flows in [Bam20a, Bam20b]. The bounds are optimal up to a constant that only depends on the dimension and possibly a lower scalar curvature bound. In the special case in which the flow consists of Einstein metrics, these bounds agree with the optimal bounds for spaces with Ricci curvature bounded from below. Moreover, our bounds are local in the sense that if a bound depends on the collapsedness of the underlying flow, then we are able to quantify this dependence using the pointed Nash entropy based only at the point in question. Among other things, we will show the following bounds: Upper and lower volume bounds for distance balls, dependence of the pointed Nash entropy on its basepoint in space and time, pointwise upper Gaussian bound on the heat kernel and a bound on its derivative and an $L^1$-Poincare inequality. The proofs of these bounds will, in part, rely on a monotonicity formula for a notion, called variance of conjugate heat kernels. We will also derive estimates concerning the dependence of the pointed Nash entropy on its basepoint, which are asymptotically optimal. These will allow us to show that points in spacetime that are nearby in a certain sense have comparable pointed Nash entropy. Hence the pointed Nash entropy is a good quantity to measure local collapsedness of a Ricci flow Our results imply a local $varepsilon$-regularity theorem, improving a result of Hein and Naber. Some of our results also hold for super Ricci flows.
We obtain Sobolev inequalities for the Schrodinger operator -Delta-V, where V has critical behaviour V(x)=((N-2)/2)^2|x|^{-2} near the origin. We apply these inequalities to obtain pointwise estimates on the associated heat kernel, improving upon earlier results.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا