Spin alignment measurements using vector mesons with ALICE detector at the LHC


Abstract in English

We present new measurements related to spin alignment of $mathrm{K^{*0}}$ vector mesons at mid-rapidity for Pb-Pb collisions at $sqrt{s_{mathrm{NN}}}$ = 2.76 and 5.02 TeV. The spin alignment measurements are carried out with respect to production plane and second order event plane. At low $p_{mathrm{T}}$ the spin density matrix element $rho_{00}$ for $mathrm{K^{*0}}$ is found to have values slightly below 1/3, while it is consistent with 1/3, i.e. no spin alignment, at high $p_{mathrm{T}}$. Similar values of $rho_{00}$ are observed w.r.t. both production plane and event plane. Within statistical and systematic uncertainties, $rho_{00}$ values are also found to be independent of $sqrt{s_{mathrm{NN}}}$. $rho_{00}$ also shows centrality dependence with maximum deviation from 1/3 for mid-central collisions w.r.t. both the kinematic planes. The measurements for $mathrm{K^{*0}}$ in pp collisions at $sqrt{s}$ = 13 TeV and for $mathrm{K^{0}_{S}}$ (a spin 0 hadron) in 20-40% central Pb-Pb collisions at $sqrt{s_{mathrm{NN}}}$ = 2.76 TeV are consistent with no spin alignment.

Download