Modeling Task Effects in Human Reading with Neural Attention


Abstract in English

Humans read by making a sequence of fixations and saccades. They often skip words, without apparent detriment to understanding. We offer a novel explanation for skipping: readers optimize a tradeoff between performing a language-related task and fixating as few words as possible. We propose a neural architecture that combines an attention module (deciding whether to skip words) and a task module (memorizing the input). We show that our model predicts human skipping behavior, while also modeling reading times well, even though it skips 40% of the input. A key prediction of our model is that different reading tasks should result in different skipping behaviors. We confirm this prediction in an eye-tracking experiment in which participants answers questions about a text. We are able to capture these experimental results using the our model, replacing the memorization module with a task module that performs neural question answering.

Download