Do you want to publish a course? Click here

Dark Matter Particle Explorer observations of high-energy cosmic ray electrons plus positrons and their physical implications

104   0   0.0 ( 0 )
 Added by Qiang Yuan
 Publication date 2018
  fields Physics
and research's language is English
 Authors Qiang Yuan




Ask ChatGPT about the research

The DArk Matter Particle Explorer (DAMPE) is a satellite-borne, high-energy particle and $gamma$-ray detector, which is dedicated to indirectly detecting particle dark matter and studying high-energy astrophysics. The first results about precise measurement of the cosmic ray electron plus positron spectrum between 25 GeV and 4.6 TeV were published recently. The DAMPE spectrum reveals an interesting spectral softening around $0.9$ TeV and a tentative peak around $1.4$ TeV. These results have inspired extensive discussion. The detector of DAMPE, the data analysis, and the first results are introduced. In particular, the physical interpretations of the DAMPE data are reviewed.



rate research

Read More

We use 7 years of electron and positron Fermi-LAT data to search for a possible excess in the direction of the Sun in the energy range from 42 GeV to 2 TeV. In the absence of a positive signal we derive flux upper limits which we use to constrain two different dark matter (DM) models producing $e^+ e^-$ fluxes from the Sun. In the first case we consider DM model being captured by the Sun due to elastic scattering and annihilation into $e^+ e^-$ pairs via a long-lived light mediator that can escape the Sun. In the second case we consider instead a model where DM density is enhanced around the Sun through inelastic scattering and the DM annihilates directly into $e^+ e^-$ pairs. In both cases we perform an optimal analysis, searching specifically for the energy spectrum expected in each case, i.e., a box-like shaped and line-like shaped spectrum respectively. No significant signal is found and we can place limits on the spin-independent cross-section in the range from $10^{-46}~cm^2$ to $10^{-44}~cm^2$ and on the spin-dependent cross-section in the range from $10^{-43}~cm^2$ to $10^{-41}~cm^2$. In the case of inelastic scattering the limits on the cross-section are in the range from $10^{-43}~cm^2$ to $10^{-41}~cm^2$. The limits depend on the life time of the mediator (elastic case) and on the mass splitting value (inelastic case), as well as on the assumptions made for the size of the deflections of electrons and positrons in the interplanetary magnetic field.
Isotropy is a key assumption in many models of cosmic-ray electrons and positrons. We find that simulation results imply a critical energy of ~10-1000 GeV above which electrons and positrons can spend their entire lives in streams threading magnetic fields, due to energy losses. This would restrict the number of electron/positron sources contributing at Earth, likely leading to smooth electron and positron spectra, as is observed. For positrons, this could be as few as one, with an enhanced flux that would ease energetics concerns of a pulsar origin of the positron excess, or even zero, bringing dark matter into play. We conclude that ideas about electron/positron propagation based on either isotropic diffusion or turbulent fields must be changed.
60 - P. Sizun 2006
The annihilation of light dark matter was recently advocated as a possible explanation of the large positron injection rate at the Galactic center deduced from observations by the SPI spectrometer aboard INTEGRAL. The modelling of internal Bremsstrahlung and in-flight annihilation radiations associated to this process drastically reduced the mass range of this light dark matter particle. We estimate critically the various energy losses and radiations involved in the propagation of the positron before its annihilation --in- flight or at rest. Using a simple model with mono-energetic positrons injected and confined to the Galactic bulge, we compute energy losses and gamma-ray radiations caused by ionization, Bremsstrahlung interactions as well as in-flight and at rest annihilation and compare these predictions to the available observations, for various injection energies. Confronting the predictions with observations by the CGRO/EGRET, CGRO/COMPTEL, INTEGRAL/SPI and INTEGRAL/IBIS/ISGRI instruments, we deduce a mass upper bound of 3 to 7.5 MeV/c^2 for the hypothetical light dark matter particle. The most restrictive limit is in agreement with the value previously found by Beacom and Yuksel and was obtained under similar assumptions, while the 7.5 MeV/c^2 value corresponds to more conservative choices and to a partially ionized propagation medium. We stress how the limit depends on the degree of ionization of the propagation medium and how its precision could be improved by a better appraisal of data uncertainties.
Recently cosmic ray electrons and positrons, i.e. cosmic ray charged leptons, have been observed. To understand the distances from our solar system to the sources of such lepton cosmic rays, it is important to understand energy losses from cosmic electrodynamic fields. Energy losses for ultra-relativistic electrons and/or positrons due to classical electrodynamic bremsstrahlung are computed. The energy losses considered are (i) due to Thompson scattering from fluctuating electromagnetic fields in the background cosmic thermal black body radiation and (ii) due to the synchrotron radiation losses from quasi-static domains of cosmic magnetic fields. For distances to sources of galactic length proportions, the lepton cosmic ray energy must be lass than about a TeV.
Low energy cosmic rays are modulated by the solar activity when they propagation in the heliosphere, leading to ambiguities in understanding their acceleration at sources and propagation in the Milky Way. By means of the precise measurements of the $e^-$, $e^+$, $e^-+e^+$, and $e^+/(e^-+e^+)$ spectra by AMS-02 near the Earth, as well as the very low energy measurements of the $e^-+e^+$ fluxes by Voyager-1 far away from the Sun, we derive the local interstellar spectra (LIS) of $e^-$ and $e^+$ components individually. Our method is based on a non-parametric description of the LIS of $e^-$ and $e^+$ and a force-field solar modulation model. We then obtain the evolution of the solar modulation parameters based on the derived LIS and the monthly fluxes of cosmic ray $e^-$ and $e^+$ measured by AMS-02. {bf To better fit the monthly data, additional renormalization factors for $e^-$ and $e^+$ have been multiplied to the modulated fluxes.} We find that the inferred solar modulation parameters of positrons are in good agreement with that of cosmic ray nuclei, and the time evolutions of the solar modulation parameters of electrons and positrons differ after the reversal of the heliosphere magnetic field polarity, which shows clearly the charge-sign dependent modulation effect.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا