Mesoscopic Interference for Metric and Curvature (MIMAC) & Gravitational Wave Detection


Abstract in English

A compact detector for space-time metric and curvature is highly desirable. Here we show that quantum spatial superpositions of mesoscopic objects, of the type which would in principle become possible with a combination of state of the art techniques and taking into account the known sources of decoherence, could be exploited to create such a detector. By using Stern-Gerlach (SG) interferometry with masses much larger than atoms, where the interferometric signal is extracted by measuring spins, we show that accelerations as low as $5times10^{-15}textrm{ms}^{-2}textrm{Hz}^{-1/2}$ or better, as well as the frame dragging effects caused by the Earth, could be sensed. Constructing such an apparatus to be non-symmetric would also enable the direct detection of curvature and gravitational waves (GWs). The GW sensitivity scales differently from the stray acceleration sensitivity, a unique feature of MIMAC. We have identified mitigation mechanisms for the known sources of noise, namely Gravity Gradient Noise (GGN), uncertainty principle and electro-magnetic forces. Hence it could potentially lead to a meter sized, orientable and vibrational noise (thermal/seismic) resilient detector of mid (ground based) and low (space based) frequency GWs from massive binaries (the predicted regimes are similar to those targeted by atom interferometers and LISA).

Download