ACCESS: A featureless optical transmission spectrum for WASP-19b from Magellan/IMACS


Abstract in English

The short period ($0.94$-day) transiting exoplanet WASP-19b is an exceptional target for transmission spectroscopy studies, due to its relatively large atmospheric scale-height ($sim 500$ km) and equilibrium temperature ($sim 2100$ K). Here we report on six precise spectroscopic Magellan/IMACS observations, five of which target the full optical window from $0.45-0.9mu$m and one targeting the $0.4-0.55mu$m blue-optical range. Five of these datasets are consistent with a transmission spectrum without any significant spectral features, while one shows a significant slope as a function of wavelength, which we interpret as arising from photospheric heterogeneities in the star. Coupled with HST/WFC3 infrared observations, our optical/near-infrared measurements point to the presence of high altitude clouds in WASP-19bs atmosphere in agreement with previous studies. Using a semi-analytical retrieval approach, considering both planetary and stellar spectral features, we find a water abundance consistent with solar for WASP-19b and strong evidence for sub-solar abundances for optical absorbers such as TiO and Na; no strong optical slope is detected, which suggests that if hazes are present, they are much weaker than previously suggested. In addition, two spot-crossing events are observed in our datasets and analyzed, including one of the first unambiguously detected bright spot-crossing events on an exoplanet host star.

Download