Do you want to publish a course? Click here

Is there a left-handed magnetic field in the solar neighborhood? Exploring helical magnetic fields in the interstellar medium through dust polarization power spectra

45   0   0.0 ( 0 )
 Added by Andrea Bracco
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The full-sky Planck polarization data at 850um revealed unexpected properties of the E and B mode power spectra of dust emission in the interstellar medium (ISM). The positive cross-correlation between the total dust intensity, T, with the B modes has raised new questions about the physical mechanisms that affect dust polarization, such as the Galactic magnetic-field structure. This is key both to better understanding ISM dynamics and to accurately describing Galactic foregrounds to the polarization of the Cosmic Microwave Background (CMB). In this theoretical paper we investigate the possibility that the observed cross-correlations in the dust polarization power spectra, and specifically between T and B, can be related to a parity-odd quantity in the ISM such as the magnetic helicity. We produce synthetic dust polarization data, derived from 3D analytical toy models of density structures and helical magnetic fields, to compare with the E and B modes of observations. Focusing on the observed T-B correlation, we propose a new line of interpretation of the Planck observations based on a large-scale helical component of the Galactic magnetic field in the solar neighborhood. Our analysis shows that: I) the sign of magnetic helicity does not affect E and B modes for isotropic magnetic-field configurations; II) helical magnetic fields threading interstellar filaments cannot reproduce the Planck results; III) a weak helical left-handed magnetic field structure in the solar neighborhood may explain the T-B correlation seen in the Planck data. This work suggests a new perspective for the interpretation of the dust polarization power spectra, which strongly supports the imprint of a large-scale structure of the Galactic magnetic field in the solar neighborhood.



rate research

Read More

Dust polarization is a powerful tool for studying the magnetic field properties in the interstellar medium (ISM). However, it does not provide a direct measurement of its strength. Different methods havebeen developed which employ both polarization and spectroscopic data in order to infer the field strength. The most widely applied methods have been developed by Davis (1951), Chandrasekhar & Fermi (1953) (DCF), Hildebrand et al. (2009) and Houde et al.(2009) (HH09). They rely on the assumption that isotropic turbulent motions initiate the propagation of Alvfen waves. Observations,however, indicate that turbulence in the ISM is anisotropic and non-Alfvenic (compressible) modes may be important. Our goal is to develop a new method for estimating the field strength in the ISM, which includes the compressible modes and does not contradict the anisotropic properties of turbulence. We use simple energetics arguments that take into account the compressible modes to estimate the strength of the magnetic field. We derive the following equation: $B_{0}=sqrt{2 pirho} delta v /sqrt{delta theta}$, where $rho$ is the gas density, $delta v$ is the rms velocity as derived from the spread of emission lines, and $delta theta$ is the dispersion of polarization angles. We produce synthetic observations from 3D MHD simulationsand we assess the accuracy of our method by comparing the true field strength with the estimates derived from our equation. We find a mean relative deviation of $17 %$. The accuracy of our method does not depend on the turbulence properties of the simulated model. In contrast DCF and HH09 systematically overestimate the field strength. HH09 produces accurate results only for simulations with high sonic Mach numbers.
Magnetism is one of the most important forces on the interstellar medium (ISM), anisotropically regulating the structure and star formation that drive galactic evolution. Recent high dynamic range observations of diffuse gas and molecular clouds have revealed new links between interstellar structures and the ambient magnetic field. ISM morphology encodes rich physical information, but deciphering it requires high-resolution measurements of the magnetic field: linear polarization of starlight and dust emission, and Zeeman splitting. These measure different components of the magnetic field, and crucially, Zeeman splitting is the only way to directly measure the field strength in the ISM. We advocate a statistically meaningful survey of magnetic field strengths using the 21-cm line in absorption, as well as an observational test of the link between structure formation and field strength using the 21-cm line in emission. Finally, we report on the serendipitous discovery of linear polarization of the 21-cm line, which demands both theoretical and observational follow-up.
Observations show that magnetic fields in the interstellar medium (ISM) often do not respond to increases in gas density as would be naively expected for a frozen-in field. This may suggest that the magnetic field in the diffuse gas becomes detached from dense clouds as they form. We have investigated this possibility using theoretical estimates, a simple magneto-hydrodynamic model of a flow without mass conservation and numerical simulations of a thermally unstable flow. Our results show that significant magnetic flux can be shed from dense clouds as they form in the diffuse ISM, leaving behind a magnetically dominated diffuse gas.
Understanding the physics of how stars form is a highly-prioritized goal of modern Astrophysics, in part because star formation is linked to both galactic dynamics on large scales and to the formation of planets on small scales. It is well-known that stars form from the gravitational collapse of molecular clouds, which are in turn formed out of the turbulent interstellar medium. Star formation is highly inefficient, with one of the likely culprits being the regulation against gravitational collapse provided by magnetic fields. Measurement of the polarized emission from interstellar dust grains, which are partially aligned with the magnetic field, provides a key tool for understanding the role these fields play in the star formation process. Over the past decade, much progress has been made by the most recent generation of polarimeters operating over a range of wavelengths (from the far-infrared through the millimeter part of the spectrum) and over a range of angular resolutions (from less than an arcsecond through fractions of a degree). Future developments in instrument sensitivity for ground-based, airborne, and space-borne polarimeters operating over range of spatial scales are critical for enabling revolutionary steps forward in our understanding of the magnetized turbulence from which stars are formed.
145 - P. C. Frisch 2011
Similar directions are obtained for the local interstellar magnetic field (ISMF) by comparing diverse data and models that sample five orders of magnetic in spatial scales. These data include the ribbon of energetic neutral atoms discovered by the Interstellar Boundary Explorer, heliosphere models, the linear polarization of light from nearby stars, the Loop I ISMF, and pulsars that are within 100--300 pc. Together these data suggest that the local ISMF direction is correlated over scales of about 100 pc, such as would be expected for the interarm region of the galaxy. The heliosphere tail-in excess of GeV cosmic rays is consistent with the direction of the local ISMF direction found from polarization data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا