No Arabic abstract
The X-ray spectral curvature of blazars is traditionally explained by an empirical log-parabola function characterized by three parameters, namely the flux, curvature and spectral index at a given energy. Since their exact relationship with the underlying physical quantities is unclear, interpreting the physical scenario of the source through these parameters is difficult. To attain an insight on the X-ray spectral shape, we perform a detailed study of the X-ray spectra of the blazar MKN 421, using an analytical model where the electron diffusion from the particle acceleration site is energy-dependent. The resultant synchrotron spectrum is again determined by three parameters, namely, the energy index of the escape time scale, the quantity connecting the electron energy to the observed photon energy and the normalization. The X-ray observations of MKN 421, during July 2012 - April 2013 by NuSTAR and Swift-XRT are investigated using this model and we find a significant correlation between model parameters and the observational quantities. Additionally, a strong anti-correlation is found between the fit parameters defining the spectral shape, which was not evident from earlier studies using empirical models. This indicates the flux variations in MKN 421 and possibly other blazars, may arise from a definite physical process that needs to be further investigated.
The X-ray observations of Mkn 421 show significant spectral curvature that can be reproduced by a log-parabola function. The spectra can also be fitted by an analytical model considering synchrotron emission from an electron distribution that is accelerated at a shock front with an energy-dependent diffusion(EDD model). The spectral fit of NuSTAR and Swift-XRT observations using EDD model during different flux states reveal the model parameters are strongly correlated. We perform a detailed investigation of this correlation to decipher the information hidden underneath. The model predicts the synchrotron peak energy to be correlated with the peak spectral curvature which is consistent with the case of Mkn 421. Expressing the energy dependence of the diffusion in terms of the magnetohydrodynamic turbulence energy index, it appears the turbulence shifts from Kolmogorov/Kraichnan type to Bohm limit during high flux states. Further, the correlation between the best-fit parameters of EDD model lets us derive an expression for the product of source magnetic field(B) and jet Doppler factor($delta$) in terms of synchrotron and Compton peak energies. The synchrotron peak energy is obtained using the simultaneous Swift-XRT and NuSTAR observations; whereas, the Compton peak energy is estimated by performing a linear regression analysis of the archival spectral peaks. The deduced $delta$B varies over a wide range; however, it satisfies reasonably well with the values estimated solely from the spectral peak energies independent of the EDD model. This highlights the plausible connection between the microscopic description of the electron diffusion with the macroscopic quantities deciding the broadband spectrum of Mkn 421.
Mkn 421 was repeatedly observed with BeppoSAX in 1997-1998. We present highlights of the results of the thorough temporal and spectral analysis discussed by Fossati et al. (1999) and Maraschi et al. (1999), focusing on the flare of April 1998, which was simultaneously observed also at TeV energies. The detailed study of the flare in different energy bands reveals a few very important new results: (a) hard photons lag the soft ones by 2-3 ks *a behavior opposite to what is normally found in High energy peak BL Lacs X-ray spectra*; (b) the flux decay of the flare can be intrinsically achromatic if a stationary underlying emission component is present. Moreover the spectral evolution during the flare has been followed by extracting X-ray spectra on few ks intervals, allowing to detect for the first time the peak of the synchrotron component shifting to higher energies during the rising phase, and then receding. The spectral analysis confirms the delay in the flare at the higher energies, as above a few keV the spectrum changes only after the peak of the outburst has occurred. The spectral and temporal information obtained challenge the simplest models currently adopted for the (synchrotron) emission and most importantly provide clues on the particle acceleration process. A theoretical picture accounting for all the observational constraints is discussed, where electrons are injected at low energies and then progressively accelerated during the development of the flare.
Context: In April 2013, the nearby (z=0.031) TeV blazar, Mkn 421, showed one of the largest flares in X-rays since the past decade. Aim: To study all multiwavelength data available during MJD 56392 to 56403, with special emphasis on X-ray data, and understand the underlying particle energy distribution. Methods: We study the correlations between the UV and gamma bands with the X-ray band using the z-transformed discrete correlation function. We model the underlying particle spectrum with a single population of electrons emitting synchrotron radiation, and do a statistical fitting of the simultaneous, time-resolved data from the Swift-XRT and the NuSTAR. Results: There was rapid flux variability in the X-ray band, with a minimum doubling timescale of $1.69 pm 0.13$ hrs. There were no corresponding flares in UV and gamma bands. The variability in UV and gamma rays are relatively modest with $ sim 8 % $ and $sim 16 % $ respectively, and no significant correlation was found with the X-ray light curve. The observed X-ray spectrum shows clear curvature which can be fit by a log parabolic spectral form. This is best explained to originate from a log parabolic electron spectrum. However, a broken power law or a power law with an exponentially falling electron distribution cannot be ruled out either. Moreover, the excellent broadband spectrum from $0.3-79$ keV allows us to make predictions of the UV flux. We find that this prediction is compatible with the observed flux during the low state in X-rays. However, during the X-ray flares, the predicted flux is a factor of $2-50$ smaller than the observed one. This suggests that the X-ray flares are plausibly caused by a separate population which does not contribute significantly to the radiation at lower energies. Alternatively, the underlying particle spectrum can be much more complex than the ones explored in this work.
Blazars are variable emitters across all wavelengths over a wide range of timescales, from months down to minutes. It is therefore essential to observe blazars simultaneously at different wavelengths, especially in the X-ray and gamma-ray bands, where the broadband spectral energy distributions usually peak. In this work, we report on three target-of-opportunity (ToO) observations of Mrk 421, one of the brightest TeV blazars, triggered by a strong flaring event at TeV energies in 2014. These observations feature long, continuous, and simultaneous exposures with XMM-Newton (covering X-ray and optical/ultraviolet bands) and VERITAS (covering TeV gamma-ray band), along with contemporaneous observations from other gamma-ray facilities (MAGIC and Fermi-LAT) and a number of radio and optical facilities. Although neither rapid flares nor significant X-ray/TeV correlation are detected, these observations reveal subtle changes in the X-ray spectrum of the source over the course of a few days. We search the simultaneous X-ray and TeV data for spectral hysteresis patterns and time delays, which could provide insight into the emission mechanisms and the source properties (e.g. the radius of the emitting region, the strength of the magnetic field, and related timescales). The observed broadband spectra are consistent with a one-zone synchrotron self-Compton model. We find that the power spectral density distribution at $gtrsim 4times 10^{-4}$ Hz from the X-ray data can be described by a power-law model with an index value between 1.2 and 1.8, and do not find evidence for a steepening of the power spectral index (often associated with a characteristic length scale) compared to the previously reported values at lower frequencies.
A detailed multi-epoch study of the broadband spectral behaviour of the very high energy (VHE) source, 1ES,1011+496, provides us with valuable information regarding the underlying particle distribution. Simultaneous observations of the source at optical/ UV/ X-ray/ $gamma$-ray during three different epochs, as obtained from Swift-UVOT/ Swift-XRT/ Fermi-LAT, are supplemented with the information available from the VHE telescope array, HAGAR. The longterm flux variability at the Fermi-LAT energies is clearly found to be lognormal. It is seen that the broadband spectral energy distribution (SED) of 1ES,1011+496 can be successfully reproduced by synchrotron and synchrotron self Compton emission models. Notably, the observed curvature in the photon spectrum at X-ray energies demands a smooth transition of the underlying particle distribution from a simple power law to a power law with an exponential cutoff or a smooth broken power law distribution, which may possibly arise when the escape of the particles from the main emission region is energy dependent. Specifically, if the particle escape rate is related to its energy as $E^{0.5}$ then the observed photon spectrum is consistent with the ones observed during the various epochs.