Do you want to publish a course? Click here

The $(2,3)$-generation of the finite unitary groups

90   0   0.0 ( 0 )
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

In this paper we prove that the unitary groups $SU_n(q^2)$ are $(2,3)$-generated for any prime power $q$ and any integer $ngeq 8$. By previous results this implies that, if $ngeq 3$, the groups $SU_n(q^2)$ and $PSU_n(q^2)$ are $(2,3)$-generated, except when $(n,q)in{(3,2),(3,3),(3,5),(4,2), (4,3),(5,2)}$.



rate research

Read More

In this paper we give explicit (2,3)-generators of the unitary groups SU_6(q^ 2), for all q. They fit into a uniform sequence of likely (2,3)-generators for all n>= 6.
This paper is a new important step towards the complete classification of the finite simple groups which are $(2, 3)$-generated. In fact, we prove that the symplectic groups $Sp_{2n}(q)$ are $(2,3)$-generated for all $ngeq 4$. Because of the existing literature, this result implies that the groups $PSp_{2n}(q)$ are $(2,3)$-generated for all $ngeq 2$, with the exception of $PSp_4(2^f)$ and $PSp_4(3^f)$.
In this paper we determine the classical simple groups of dimension r=3,5 which are (2,3)-generated (the cases r = 2, 4 are known). If r = 3, they are PSL_3(q), q <> 4, and PSU_3(q^2), q^2 <> 9, 25. If r = 5 they are PSL_5(q), for all q, and PSU_5(q^2), q^2 >= 9. Also, the soluble group PSU_3(4) is not (2,3)-generated. We give explicit (2,3)-generators of the linear preimages, in the special linear groups, of the (2,3)-generated simple groups.
281 - Marc Burger , Shahar Mozes 2017
In this paper we characterize the finite permutation groups $F<S_d$ on $d$ letters such that every compact open subgroup of the associated universal group $U(F)<{rm Aut} T_d$ is topologically finitely generated. Actually we show that in this case the groups are positively finitely generated.
For a finite group generated by involutions, the involution width is defined to be the minimal $kinmathbb{N}$ such that any group element can be written as a product of at most $k$ involutions. We show that the involution width of every non-abelian finite simple group is at most $4$. This result is sharp, as there are families with involution width precisely 4.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا