No Arabic abstract
Deformable elastic bodies in viscous and viscoelastic media constitute a large portion of synthetic and biological complex fluids. We present a parallelized 3D-simulation methodology which fully resolves the momentum balance in the solid and fluid domains. An immersed boundary algorithm is exploited known as the immersed finite element method (IFEM) which accurately determines the internal forces in the solid domain. The scheme utilized has the advantages of requiring no costly re-meshing, handling finite Reynolds number, as well as incorporating non-linear viscoelasticity in the fluid domain. Our algorithm is designed for computationally efficient simulation of multi-particle suspensions with mixed structure types. The internal force calculation in the solid domain in the IFEM is coupled with a finite volume based incompressible fluid solver, both of which are massively parallelized for distributed memory architectures. We performed extensive case studies to ensure the fidelity of our algorithm. Namely, a series of single particle simulations for capsules, red blood cells, and elastic solid deformable particles were conducted in viscous and viscoelastic media. All of our results are in excellent quantitative agreement with the corresponding reported data in the literature which are based on different simulation platforms. Furthermore, we assess the accuracy of multi-particle simulation of blood suspensions (red blood cells in plasma) with and without platelets. Finally, we present the results of a novel simulation of multiple solid deformable objects in a viscoelastic medium.
Modeling the effect of complex terrain on high Reynolds number flows is important to improve our understanding of flow dynamics in wind farms and the dispersion of pollen and pollutants in hilly or mountainous terrain as well as the flow in urban areas. Unfortunately, simulating high Reynolds number flows over complex terrain is still a big challenge. Therefore, we present a simplified version of the wall modeled immersed boundary method by Chester et al. (J. Comput. Phys. 2007; 225: 427-448). By preventing the extrapolation and iteration steps in the original method, the proposed approach is much easier to implement and more computationally efficient. Furthermore, the proposed method only requires information that is available to each processor and thus is much more efficient for simulations performed on a large number of cores. These are crucial considerations for algorithms that are deployed on modern supercomputers and will allow much higher grid resolutions to be considered. We validate our method against wind tunnel measurements for turbulent flows over wall-mounted cubes, a two dimensional ridge, and a three-dimensional hill. We find very good agreement between the simulation results and the measurement data, which shows this method is suitable to model high Reynolds number flows over complex terrain.
Two methods for solid body representation in flow simulations available in the Pencil Code are the immersed boundary method and overset grids. These methods are quite different in terms of computational cost, flexibility and numerical accuracy. We present here an investigation of the use of the different methods with the purpose of assessing their strengths and weaknesses. At present, the overset grid method in the Pencil Code can only be used for representing cylinders in the flow. For this task it surpasses the immersed boundary method in yielding highly accurate solutions at moderate computational costs. This is partly due to local grid stretching and a body-conformal grid, and partly due to the possibility of working with local time step restrictions on different grids. The immersed boundary method makes up the lack of computational efficiency with flexibility in regards to application to complex geometries, due to a recent extension of the method that allows our implementation of it to represent arbitrarily shaped objects in the flow.
In this paper, we consider a non-local (in time) two-phase flow model. The non-locality is introduced through the wettability alteration induced dynamic capillary pressure function. We present a monotone fixed-point iterative linearization scheme for the resulting non-standard model. The scheme treats the dynamic capillary pressure functions semi-implicitly and introduces an $L$-scheme type cite{List2016, Radu2015} stabilization term in the pressure as well as the transport equations. We prove the convergence of the proposed scheme theoretically under physically acceptable assumptions and verify the theoretical analysis with numerical simulations. The scheme is implemented and tested for a variety of reservoir heterogeneity in addition to the dynamic change of the capillary pressure function. The proposed scheme satisfies the predefined stopping criterion within a few numbers of iterations. We also compared the performance of the proposed scheme against the iterative IMplicit Pressure Explicit Saturation scheme
Finite element method (FEM) suffers from a serious mesh distortion problem when used for high velocity impact analyses. The smooth particle hydrodynamics (SPH) method is appropriate for this class of problems involving severe damages but at considerable computational cost. It is beneficial if the latter is adopted only in severely distorted regions and FEM further away. The coupled smooth particle hydrodynamics - finite element method (SFM) has been adopted in a commercial hydrocode LS-DYNA to study the perforation of Weldox 460E steel and AA5083-H116 aluminum plates with varying thicknesses and various projectile nose geometries including blunt, conical and ogival noses. Effects of the SPH domain size and particle density are studied considering the friction effect between the projectile and the target materials. The simulated residual velocities and the ballistic limit velocities from the SFM agree well with the published experimental data. The study shows that SFM is able to emulate the same failure mechanisms of the steel and aluminum plates as observed in various experimental investigations for initial impact velocity of 170 m/s and higher.
Particle-in-Cell (PIC) methods are widely used computational tools for fluid and kinetic plasma modeling. While both the fluid and kinetic PIC approaches have been successfully used to target either kinetic or fluid simulations, little was done to combine fluid and kinetic particles under the same PIC framework. This work addresses this issue by proposing a new PIC method, PolyPIC, that uses polymorphic computational particles. In this numerical scheme, particles can be either kinetic or fluid, and fluid particles can become kinetic when necessary, e.g. particles undergoing a strong acceleration. We design and implement the PolyPIC method, and test it against the Landau damping of Langmuir and ion acoustic waves, two stream instability and sheath formation. We unify the fluid and kinetic PIC methods under one common framework comprising both fluid and kinetic particles, providing a tool for adaptive fluid-kinetic coupling in plasma simulations.