Any realist interpretation of quantum theory must grapple with the measurement problem and the status of state-vector collapse. In a no-collapse approach, measurement is typically modeled as a dynamical process involving decoherence. We describe how the minimal modal interpretation closes a gap in this dynamical description, leading to a complete and consistent resolution to the measurement problem and an effective form of state collapse. Our interpretation also provides insight into the indivisible nature of measurement--the fact that you cant stop a measurement part-way through and uncover the underlying `ontic dynamics of the system in question. Having discussed the hidden dynamics of a systems ontic state during measurement, we turn to more general forms of open-system dynamics and explore the extent to which the details of the underlying ontic behavior of a system can be described. We construct a space of ontic trajectories and describe obstructions to defining a probability measure on this space.