No Arabic abstract
Recent studies show that rotation significantly affects the s-process in massive stars. We provide tables of yields for non-rotating and rotating massive stars between 10 and 150 $M_{odot}$ at $Z=10^{-3}$ ([Fe/H] $=-1.8$). Tables for different mass cuts are provided. The complete s-process is followed during the whole evolution with a network of 737 isotopes, from Hydrogen to Polonium. A grid of stellar models with initial masses of 10, 15, 20, 25, 40, 60, 85, 120 and 150 $M_{odot}$ and with an initial rotation rate of both 0 or 40$~%$ of the critical velocity was computed. Three extra models were computed in order to investigate the effect of faster rotation (70$~%$ of the critical velocity) and of a lower $^{17}$O($alpha,gamma$) reaction rate. At the considered metallicity, rotation has a strong impact on the production of s-elements for initial masses between 20 and 60 $M_{odot}$. In this range, the first s-process peak is boosted by $2-3$ dex if rotation is included. Above 60 $M_{odot}$, s-element yields of rotating and non-rotating models are similar. Increasing the initial rotation from 40$~%$ to 70$~%$ of the critical velocity enhances the production of $40 lesssim Z lesssim 60$ elements by $sim 0.5-1$ dex. Adopting a reasonably lower $^{17}$O($alpha,gamma$) rate in the fast rotating model (70$~%$ of the critical velocity) boosts again the yields of s-elements with $55 lesssim Z lesssim 82$ by about 1 dex. In particular, a modest amount of Pb is produced. Together with s-elements, some light elements (particularly fluorine) are strongly overproduced in rotating models.
Context. Rotation is known to affect the nucleosynthesis of light elements in massive stars, mainly by rotation-induced mixing. In particular, rotation boosts the primary nitrogen production. Models of rotating stars are able to reproduce the nitrogen observed in low-Z halo stars. Aims. Here we present the first grid of stellar models for rotating massive stars at low Z, where a full s-process network is used to study the impact of rotation-induced mixing on the nucleosynthesis of heavy elements. Methods. We used the Geneva stellar evolution code that includes an enlarged reaction network with nuclear species up to bismuth to calculate 25 M$_odot$ models at three different Z and with different initial rotation rates. Results. First, we confirm that rotation-induced mixing leads to a production of primary $^{22}$Ne, which is the main neutron source for the s process in massive stars. Therefore rotation boosts the s process in massive stars at all Z. Second, the neutron-to-seed ratio increases with decreasing Z in models including rotation, which leads to the complete consumption of all iron seeds at Z < 1e-3 by the end of core He-burning. Thus at low Z, the iron seeds are the main limitation for this boosted s process. Third, as Z decreases, the production of elements up to the Ba peak increases at the expense of the elements of the Sr peak. We studied the impact of the initial rotation rate and of the uncertain $^{17}$O$(alpha,gamma)$ rate (which strongly affects the neutron poison strength of $^{16}$O) on our results. This study shows that rotating models can produce significant amounts of elements up to Ba over a wide range of Z. Fourth, compared to the He-core, the primary $^{22}$Ne production in the He-shell is even higher (> 1% in mass fraction at all Z), which could open the door for an explosive neutron capture nucleosynthesis in the He-shell, with a primary neutron source.
Abridged: Observed abundances of extremely metal-poor (EMP) stars in the Halo hold clues for the understanding of the ancient universe. Interpreting these clues requires theoretical stellar models at the low-Z regime. We provide the nucleosynthetic yields of intermediate-mass Z=$10^{-5}$ stars between 3 and 7.5 $M_{sun}$, and quantify the effects of the uncertain wind rates. We expect these yields can be eventually used to assess the contribution to the chemical inventory of the early universe, and to help interpret abundances of selected C-enhanced EMP stars. By comparing our models and other existing in the literature, we explore evolutionary and nucleosynthetic trends with wind prescriptions and with initial metallicity. We compare our results to observations of CEMP-s stars belonging to the Halo. The yields of intermediate-mass EMP stars reflect the effects of very deep second dredge-up (for the most massive models), superimposed with the combined signatures of hot-bottom burning and third dredge-up. We confirm the reported trend that models with initial metallicity Z$_{ini}$ <= 0.001 give positive yields of $^{12}C, ^{15}N, ^{16}O$, and $^{26}Mg$. The $^{20}Ne, ^{21}Ne$, and $^{24}Mg$ yields, which were reported to be negative at Z$_{ini}$ = 0.0001, become positive for Z=$10^{-5}$. The results using two different prescriptions for mass-loss rates differ widely in terms of the duration of the thermally-pulsing (Super) AGB phase, overall efficiency of the third dredge-up episode, and nucleosynthetic yields. The most efficient of the standard wind rates frequently used in the literature seems to favour agreement between our yield results and observational data. Regardless of the wind prescription, all our models become N-enhanced EMP stars.
Identifying planets around O-type and B-type stars is inherently difficult; the most massive known planet host has a mass of only about $3M_{odot}$. However, planetary systems which survive the transformation of their host stars into white dwarfs can be detected via photospheric trace metals, circumstellar dusty and gaseous discs, and transits of planetary debris crossing our line-of-sight. These signatures offer the potential to explore the efficiency of planet formation for host stars with masses up to the core-collapse boundary at $approx 8M_{odot}$, a mass regime rarely investigated in planet formation theory. Here, we establish limits on where both major and minor planets must reside around $approx 6M_{odot}-8M_{odot}$ stars in order to survive into the white dwarf phase. For this mass range, we find that intact terrestrial or giant planets need to leave the main sequence beyond approximate minimum star-planet separations of respectively about 3 and 6 au. In these systems, rubble pile minor planets of radii 10, 1.0, and 0.1 km would have been shorn apart by giant branch radiative YORP spin-up if they formed and remained within, respectively, tens, hundreds and thousands of au. These boundary values would help distinguish the nature of the progenitor of metal-pollution in white dwarf atmospheres. We find that planet formation around the highest mass white dwarf progenitors may be feasible, and hence encourage both dedicated planet formation investigations for these systems and spectroscopic analyses of the highest mass white dwarfs.
Our main goals are to get a deeper insight into the evolution and final fates of intermediate-mass, extremely metal-poor (EMP) stars. We also aim to investigate their C, N, and O yields. Using the Monash University Stellar Evolution code we computed and analysed the evolution of stars of metallicity Z = 10^-5 and masses between 4 and 9 M_sun, from their main sequence until the late thermally pulsing (super) asymptotic giant branch, TP-(S)AGB phase. Our model stars experience a strong C, N, and O envelope enrichment either due to the second dredge-up, the dredge-out phenomenon, or the third dredge-up early during the TP-(S)AGB phase. Their late evolution is therefore similar to that of higher metallicity objects. When using a standard prescription for the mass loss rates during the TP-(S)AGB phase, the computed stars lose most of their envelopes before their cores reach the Chandrasekhar mass, so our standard models do not predict the occurrence of SNI1/2 for Z = 10^-5 stars. However, we find that the reduction of only one order of magnitude in the mass-loss rates, which are particularly uncertain at this metallicity, would prevent the complete ejection of the envelope, allowing the stars to either explode as an SNI1/2 or become an electron-capture SN. Our calculations stop due to an instability near the base of the convective envelope that hampers further convergence and leaves remnant envelope masses between 0.25 M_sun for our 4 M_sun model and 1.5 M_sun for our 9 M_sun model. We present two sets of C, N, and O yields derived from our full calculations and computed under two different assumptions, namely, that the instability causes a practically instant loss of the remnant envelope or that the stars recover and proceed with further thermal pulses. Our results have implications for the early chemical evolution of the Universe.
Novae are the observational manifestations of thermonuclear runaways on the surface of accreting white dwarfs (WDs). Although novae are an ubiquitous phenomenon, their properties at low metallicity are not well understood. Using the publicly-available stellar evolution code Modules for Experiments in Stellar Astrophysics (MESA), we model the evolution of accreting carbon-oxygen WDs and consider models which accrete matter with metallicity Z=0.02 or $10^{-4}$. We consider both models without mixing and with matter enriched by CO-elements assuming that mixing occurs in the process of accretion (with mixing fraction 0.25). We present and contrast ignition mass, ejected mass, recurrence period and maximum luminosity of novae for different WD masses and accretion rates for these metallicities and mixing cases. We find that models with Z = 0.02 have ignition masses and recurrence periods smaller than models with low Z, while the ejected mass and maximum luminosity are larger. Retention efficiency during novae outbursts decreases with increasing metallicity. In our implementation, inclusion of mixing at the H/He interface reduces accreted mass, ejected mass and recurrence period as compared to the no-mixing case, while the maximum luminosity becomes larger. Retention efficiency is significantly reduced, becoming negative in most of our models. For ease of use, we provide a tabular summary of our results.