No Arabic abstract
New long-term Very Long Baseline Array observations of the well-known jet in the M87 radio galaxy at 43 GHz show that the jet experiences a sideways shift with an approximately 8-10 yr quasi-periodicity. Such jet wobbling can be indicative of a relativistic Lense-Thirring precession resulting from a tilted accretion disc. The wobbling period together with up-to-date kinematic data on jet rotation opens up the possibility for estimating angular momentum of the central supermassive black hole. In the case of a test-particle precession, the specific angular momentum is $J/Mc=(2.7pm1.5)times10^{14}$ cm, implying moderate dimensionless spin parameters $a=0.5pm0.3$ and $0.31pm0.17$ for controversial gas-dynamic and stellar-dynamic black hole masses. However, in the case of a solid-body-like precession, the spin parameter is much smaller for both masses, $0.15pm0.05$. Rejecting this value on the basis of other independent spin estimations requires the existence of a magnetically arrested disc in M87.
Large-amplitude Sgr A* near-infrared flares result from energy injection into electrons near the black hole event horizon. Astrometry data show continuous rotation of the emission region during bright flares, and corresponding rotation of the linear polarization angle. One broad class of physical flare models invokes magnetic reconnection. Here we show that such a scenario can arise in a general relativistic magnetohydrodynamic simulation of a magnetically arrested disc. Saturation of magnetic flux triggers eruption events, where magnetically dominated plasma is expelled from near the horizon and forms a rotating, spiral structure. Dissipation occurs via reconnection at the interface of the magnetically dominated plasma and surrounding fluid. This dissipation is associated with large increases in near-infrared emission in models of Sgr A*, with durations and amplitudes consistent with the observed flares. Such events occur at roughly the timescale to re-accumulate the magnetic flux from the inner accretion disc, 10h for Sgr A*. We study near-infrared observables from one sample event to show that the emission morphology tracks the boundary of the magnetically dominated region. As the region rotates around the black hole, the near-infrared centroid and linear polarization angle both undergo continuous rotation, similar to the behavior seen in Sgr A* flares.
The exact time-dependent solution is obtained for a magnetic field growth during a spherically symmetric accretion into a black hole (BH) with a Schwarzschild metric. Magnetic field is increasing with time, changing from the initially uniform into a quasi-radial field. Equipartition between magnetic and kinetic energies in the falling gas is established in the developed stages of the flow. Estimates of the synchrotron radiation intensity are presented for the stationary flow. The main part of the radiation is formed in the region $r leq 7 r_g$, here $r_g$ is a BH gravitational radius. The two-dimensional stationary self-similar magnetohydrodynamic solution is obtained for the matter accretion into BH, in a presence of a large-scale magnetic field, when the magnetic field far from the BH is homogeneous and does not influence the flow. At the symmetry plane perpendicular to the direction of the distant magnetic field, the quasi-stationary disk is formed around BH, which structure is determined by dissipation processes. Parameters of the shock forming due to matter infall onto the disk are obtained. The radiation spectrum of the disk and the shock are obtained for the $10,, M_odot$ BH. The luminosity of such object is about the solar one, for a characteristic galactic gas density, with possibility of observation at distances less than 1 kpc. The spectra of a laminar and a turbulent disk structure around BH are very different. The turbulent disk emits a large part of its flux in the infrared. It may occur that some of the galactic infrared star-like sources are a single BH in the turbulent accretion state. The radiative efficiency of the magnetized disk is very high, reaching $sim 0.5,dot M,c^2$ so it was called recently as a magnetically arrested disk (MAD). Numerical simulations of MAD, and its appearance during accretion into neutron stars are considered and discussed.
The millimeter bump, as found in high-resolution multi-waveband observations of M87, most possibly comes from the synchrotron emission of thermal electrons in advection dominated accretion flow(ADAF). It is possible to constrain the accretion rate near the horizon if both the nuclear millimeter emission and its polarization are produced by the hot plasma in the accretion flow. The jet power of M87 has been extensively explored, which is around $8_{rm -3}^{+7}times10^{42} {rm erg/s}$ based on the analysis of the X-ray cavity. The black hole(BH) spin can be estimated if the jet power and the accretion rate near the horizon are known. We model the multi-wavelength spectral energy distribution (SED) of M87 with a coupled ADAF-jet model surrounding a Kerr BH, where the full set of relativistic hydrodynamical equations of the ADAF are solved. The hybrid jet formation model, as a variant of Blandford-Znajek model, is used to model the jet power. We find that the SMBH should be fast rotating with a dimensionless spin parameter $a_{*}simeq0.98_{rm -0.02}^{+0.012}$.
The M87 jet is extensively examined by utilizing general relativistic magnetohydrodynamic (GRMHD) simulations as well as the steady axisymmetric force-free electrodynamic (FFE) solution. Quasi-steady funnel jets are obtained in GRMHD simulations up to the scale of $sim 100$ gravitational radius ($r_{rm g}$) for various black hole (BH) spins. As is known, the funnel edge is approximately determined by the following equipartitions; i) the magnetic and rest-mass energy densities and ii) the gas and magnetic pressures. Our numerical results give an additional factor that they follow the outermost parabolic streamline of the FFE solution, which is anchored to the event horizon on the equatorial plane. We also identify the matter dominated, non-relativistic corona/wind play a dynamical role in shaping the funnel jet into the parabolic geometry. We confirm a quantitative overlap between the outermost parabolic streamline of the FFE jet and the edge of jet sheath in VLBI observations at $sim 10^{1}$-$10^{5} , r_{rm g}$, suggesting that the M87 jet is likely powered by the spinning BH. Our GRMHD simulations also indicate a lateral stratification of the bulk acceleration (i.e., the spine-sheath structure) as well as an emergence of knotty superluminal features. The spin characterizes the location of the jet stagnation surface inside the funnel. We suggest that the limb-brightened feature could be associated with the nature of the BH-driven jet, if the Doppler beaming is a dominant factor. Our findings can be examined with (sub-)mm VLBI observations, giving a clue for the origin of the M87 jet.
Sgr A* exhibits flares in the near-infrared and X-ray bands, with the luminosity in these bands increasing by factors of 10-100 for ~60 minutes. One of the models proposed to explain these flares is synchrotron emission of non-thermal particles accelerated by magnetic reconnection events in the accretion flow. We use the results from PIC simulations of magnetic reconnection to post-process 3D two-temperature GRMHD simulations of a magnetically arrested disc (MAD). We identify current sheets, retrieve their properties, estimate their potential to accelerate non-thermal particles and compute the expected non-thermal synchrotron emission. We find that the flux eruptions of MADs can provide suitable conditions for accelerating non-thermal particles to energies {gamma_e} <~ 1e6 and producing simultaneous X-ray and near-infrared flares. For a suitable choice of current-sheet parameters and a simpified synchrotron cooling prescription, the model can simultaneously reproduce the quiescent and flaring X-ray luminosities as well as the X-ray spectral shape. While the near-infrared flares are mainly due to an increase in the temperature near the black hole during the MAD flux eruptions, the X-ray emission comes from narrow current sheets bordering highly magnetized, low-density regions near the black hole. As a result, not all infrared flares are accompanied by X-ray ones. The non-thermal flaring emission can extend to very hard (<~ 100 keV) X-ray energies.