Do you want to publish a course? Click here

Planck 2018 results. IV. Diffuse component separation

241   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present full-sky maps of the cosmic microwave background (CMB) and polarized synchrotron and thermal dust emission, derived from the third set of Planck frequency maps. These products have significantly lower contamination from instrumental systematic effects than previo



rate research

Read More

We present foreground-reduced CMB maps derived from the full Planck data set in both temperature and polarization. Compared to the corresponding Planck 2013 temperature sky maps, the total data volume is larger by a factor of 3.2 for frequencies between 30 and 70 GHz, and by 1.9 for frequencies between 100 and 857 GHz. In addition, systematic errors in the forms of temperature-to-polarization leakage, analogue-to-digital conversion uncertainties, and very long time constant errors have been dramatically reduced, to the extent that the cosmological polarization signal may now be robustly recovered on angular scales $ellgtrsim40$. On the very largest scales, instrumental systematic residuals are still non-negligible compared to the expected cosmological signal, and modes with $ell < 20$ are accordingly suppressed in the current polarization maps by high-pass filtering. As in 2013, four different CMB component separation algorithms are applied to these observations, providing a measure of stability with respect to algorithmic and modelling choices. The resulting polarization maps have rms instrumental noise ranging between 0.21 and 0.27$,mutextrm{K}$ averaged over 55 arcmin pixels, and between 4.5 and 6.1$,mutextrm{K}$ averaged over 3.4 arcmin pixels. The cosmological parameters derived from the analysis of temperature power spectra are in agreement at the $1sigma$ level with the Planck 2015 likelihood. Unresolved mismatches between the noise properties of the data and simulations prevent a satisfactory description of the higher-order statistical properties of the polarization maps. Thus, the primary applications of these polarization maps are those that do not require massive simulations for accurate estimation of uncertainties, for instance estimation of cross-spectra and cross-correlations, or stacking analyses.
Planck has mapped the microwave sky in nine frequency bands between 30 and 857 GHz in temperature and seven bands between 30 and 353 GHz in polarization. In this paper we consider the problem of diffuse astrophysical component separation, and process these maps within a Bayesian framework to derive a consistent set of full-sky astrophysical component maps. For the temperature analysis, we combine the Planck observations with the 9-year WMAP sky maps and the Haslam et al. 408 MHz map to derive a joint model of CMB, synchrotron, free-free, spinning dust, CO, line emission in the 94 and 100 GHz channels, and thermal dust emission. Full-sky maps are provided with angular resolutions varying between 7.5 arcmin and 1 deg. Global parameters (monopoles, dipoles, relative calibration, and bandpass errors) are fitted jointly with the sky model, and best-fit values are tabulated. For polarization, the model includes CMB, synchrotron, and thermal dust emission. These models provide excellent fits to the observed data, with rms temperature residuals smaller than 4 uK over 93% of the sky for all Planck frequencies up to 353 GHz, and fractional errors smaller than 1% in the remaining 7% of the sky. The main limitations of the temperature model at the lower frequencies are degeneracies among the spinning dust, free-free, and synchrotron components; additional observations from external low-frequency experiments will be essential to break these. The main limitations of the temperature model at the higher frequencies are uncertainties in the 545 and 857 GHz calibration and zero-points. For polarization, the main outstanding issues are instrumental systematics in the 100-353 GHz bands on large angular scales in the form of temperature-to-polarization leakage, uncertainties in the analog-to-digital conversion, and very long time constant corrections, all of which are expected to improve in the near future.
Planck has produced detailed all-sky observations over nine frequency bands between 30 and 857 GHz. These observations allow robust reconstruction of the primordial cosmic microwave background (CMB) temperature fluctuations over nearly the full sky, as well as new constraints on Galactic foregrounds. This paper describes the component separation framework adopted by Planck. We test four foreground-cleaned CMB maps derived using qualitatively different component separation algorithms. The quality of our reconstructions is evaluated through detailed simulations and internal comparisons, and shown through various tests to be internally consistent and robust for CMB power spectrum and cosmological parameter estimation up to l = 2000. The parameter constraints on LambdaCDM cosmologies derived from these maps are consistent with those presented in the cross-spectrum based Planck likelihood analysis. We choose two of the CMB maps for specific scientific goals. We also present maps and frequency spectra of the Galactic low-frequency, CO, and thermal dust emission. The component maps are found to provide a faithful representation of the sky, as evaluated by simulations. For the low-frequency component, the spectral index varies widely over the sky, ranging from about beta = -4 to -2. Considering both morphology and prior knowledge of the low frequency components, the index map allows us to associate a steep spectral index (beta < -3.2) with strong anomalous microwave emission, corresponding to a spinning dust spectrum peaking below 20 GHz, a flat index of beta > -2.3 with strong free-free emission, and intermediate values with synchrotron emission.
We present a data analysis pipeline for CMB polarization experiments, running from multi-frequency maps to the power spectra. We focus mainly on component separation and, for the first time, we work out the covariance matrix accounting for errors associated to the separation itself. This allows us to propagate such errors and evaluate their contributions to the uncertainties on the final products.The pipeline is optimized for intermediate and small scales, but could be easily extended to lower multipoles. We exploit realistic simulations of the sky, tailored for the Planck mission. The component separation is achieved by exploiting the Correlated Component Analysis in the harmonic domain, that we demonstrate to be superior to the real-space application (Bonaldi et al. 2006). We present two techniques to estimate the uncertainties on the spectral parameters of the separated components. The component separation errors are then propagated by means of Monte Carlo simulations to obtain the corresponding contributions to uncertainties on the component maps and on the CMB power spectra. For the Planck polarization case they are found to be subdominant compared to noise.
We present cosmological parameter results from the final full-mission Planck measurements of the CMB anisotropies. We find good consistency with the standard spatially-flat 6-parameter $Lambda$CDM cosmology having a power-law spectrum of adiabatic scalar perturbations (denoted base $Lambda$CDM in this paper), from polarization, temperature, and lensing, separately and in combination. A combined analysis gives dark matter density $Omega_c h^2 = 0.120pm 0.001$, baryon density $Omega_b h^2 = 0.0224pm 0.0001$, scalar spectral index $n_s = 0.965pm 0.004$, and optical depth $tau = 0.054pm 0.007$ (in this abstract we quote $68,%$ confidence regions on measured parameters and $95,%$ on upper limits). The angular acoustic scale is measured to $0.03,%$ precision, with $100theta_*=1.0411pm 0.0003$. These results are only weakly dependent on the cosmological model and remain stable, with somewhat increased errors, in many commonly considered extensions. Assuming the base-$Lambda$CDM cosmology, the inferred late-Universe parameters are: Hubble constant $H_0 = (67.4pm 0.5)$km/s/Mpc; matter density parameter $Omega_m = 0.315pm 0.007$; and matter fluctuation amplitude $sigma_8 = 0.811pm 0.006$. We find no compelling evidence for extensions to the base-$Lambda$CDM model. Combining with BAO we constrain the effective extra relativistic degrees of freedom to be $N_{rm eff} = 2.99pm 0.17$, and the neutrino mass is tightly constrained to $sum m_ u< 0.12$eV. The CMB spectra continue to prefer higher lensing amplitudes than predicted in base -$Lambda$CDM at over $2,sigma$, which pulls some parameters that affect the lensing amplitude away from the base-$Lambda$CDM model; however, this is not supported by the lensing reconstruction or (in models that also change the background geometry) BAO data. (Abridged)
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا