Metallicity-Dependent Signatures in the Kepler Planets


Abstract in English

Using data from the California-Kepler-Survey (CKS) we study trends in planetary properties with host star metallicity for close-in planets. By incorporating knowledge of the properties of the planetary radius gap identified by the CKS survey, we are able to investigate the properties of planetary cores and their gaseous envelopes separately. Our primary findings are that the solid core masses of planets are higher around higher metallicity stars and that these more massive cores were able to accrete larger gas envelopes. Furthermore, investigating the recently reported result that planets with radii in the range (2-6Rearth) are more common at short periods around higher metallicity stars in detail, we find that the average host star metallicity of H/He atmosphere-hosting planets increases smoothly inside an orbital period of ~20 days. We interpret the location of the metallicity increase within the context of atmospheric photoevaporation: higher metallicity stars are likely to host planets with higher atmospheric metallicity, which increases the cooling in the photoevaporative outflow, lowering the mass-loss rates. Therefore, planets with higher metallicity atmospheres are able to resist photoevaporation at shorter orbital periods. Finally, we find evidence at 2.8 sigma that planets that do not host H/He atmospheres at long periods are more commonly found around lower metallicity stars. Such planets are difficult to explain by photoevaporative stripping of planets which originally accreted H/He atmospheres. Alternatively, this population of planets could be representative of planets that formed in a terrestrial-like fashion, after the gas disc dispersed.

Download