Full Coupled-Cluster Reduction for Accurate Description of Strong Electron Correlation


Abstract in English

A full coupled-cluster expansion suitable for sparse algebraic operations is developed by expanding the commutators of the Baker-Campbell-Hausdorff series explicitly for cluster operators in binary representations. A full coupled-cluster reduction that is capable of providing very accurate solutions of the many-body Schrodinger equation is then initiated employing screenings to the projection manifold and commutator operations. The projection manifold is iteratively updated through the single commutators $leftlangle kappa right| [hat H,hat T]left| 0 rightrangle$ comprised of the primary clusters $hat T_{lambda}$ with substantial contribution to the connectivity. The operation of the commutators is further reduced by introducing a correction, taking into account the so-called exclusion principle violating terms, that provides fast and near-variational convergence in many cases.

Download