Do you want to publish a course? Click here

Full Coupled-Cluster Reduction for Accurate Description of Strong Electron Correlation

116   0   0.0 ( 0 )
 Added by Seiichiro Ten-no
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

A full coupled-cluster expansion suitable for sparse algebraic operations is developed by expanding the commutators of the Baker-Campbell-Hausdorff series explicitly for cluster operators in binary representations. A full coupled-cluster reduction that is capable of providing very accurate solutions of the many-body Schrodinger equation is then initiated employing screenings to the projection manifold and commutator operations. The projection manifold is iteratively updated through the single commutators $leftlangle kappa right| [hat H,hat T]left| 0 rightrangle$ comprised of the primary clusters $hat T_{lambda}$ with substantial contribution to the connectivity. The operation of the commutators is further reduced by introducing a correction, taking into account the so-called exclusion principle violating terms, that provides fast and near-variational convergence in many cases.



rate research

Read More

Reliable quantum chemical methods for the description of molecules with dense-lying frontier orbitals are needed in the context of many chemical compounds and reactions. Here, we review developments that led to our newcomputational toolbo x which implements the quantum chemical density matrix renormalization group in a second-generation algorithm. We present an overview of the different components of this toolbox.
Following our recent work on the benzene molecule [href{https://doi.org/10.1063/5.0027617}{J.~Chem.~Phys.~textbf{153}, 176101 (2020)}], itself motivated by the blind challenge of Eriksen textit{et al.} [href{https://doi.org/10.1021/acs.jpclett.0c02621}{J.~Phys.~Chem.~Lett.~textbf{11}, 8922 (2020)}] on the same system, we report accurate full configuration interaction (FCI) frozen-core correlation energy estimates for twelve five- and six-membered ring molecules in the standard correlation-consistent double-$zeta$ Dunning basis set (cc-pVDZ). Our FCI correlation energy estimates, with estimated error smaller than 1 millihartree, are based on energetically optimized-orbital selected configuration interaction (SCI) calculations performed with the textit{Configuration Interaction using a Perturbative Selection made Iteratively} (CIPSI) algorithm. Having at our disposal these accurate reference energies, the respective performance and convergence properties of several popular and widely-used families of single-reference quantum chemistry methods are investigated. In particular, we study the convergence properties of i) the M{o}ller-Plesset perturbation series up to fifth-order (MP2, MP3, MP4, and MP5), ii) the iterative approximate coupled-cluster series CC2, CC3, and CC4, and iii) the coupled-cluster series CCSD, CCSDT, and CCSDTQ. The performance of the ground-state gold standard CCSD(T) as well as the completely renormalized CC model, CR-CC(2,3), are also investigated.
An adaptation of the full configuration interaction quantum Monte Carlo (FCIQMC) method is presented, for correlated electron problems containing heavy elements and the presence of significant relativistic effects. The modified algorithm allows for the sampling of the four-component spinors of the Dirac--Coulomb(--Breit) Hamiltonian within the relativistic no-pair approximation. The loss of spin symmetry and the general requirement for complex-valued Hamiltonian matrix elements are the most immediate considerations in expanding the scope of FCIQMC into the relativistic domain, and the alternatives for their efficient implementation are motivated and demonstrated. For the canonical correlated four-component chemical benchmark application of Thallium Hydride, we show that the necessary modifications do not particularly adversely affect the convergence of the systematic (initiator) error to the exact correlation energy for FCIQMC calculations, which is primarily dictated by the sparsity of the wave function, allowing the computational effort to somewhat bypass the formal increases in Hilbert space dimension for these problems. We apply the method to the larger problem of the spectroscopic constants of Tin Oxide, correlating 28 electrons in 122 Kramers-paired spinors, finding good agreement with experimental and prior theoretical relativistic studies.
A block-correlated coupled cluster (BCCC) method based on the generalized valence bond (GVB) wave function (GVB-BCCC in short) is proposed and implemented at the ab initio level, which represents an attractive multireference electronic structure method for strongly correlated systems. The GVB-BCCC method is demonstrated to provide accurate descriptions for multiple bond breaking in small molecules, although the GVB reference function is qualitatively wrong for the studied processes. For a challenging prototype of strongly correlated systems, tridecane with all 12 single C-C bonds at various distances, our calculations have shown that the GVB-BCCC2b method can provide highly comparable results as the density matrix renormalization group method for potential energy surfaces along simultaneous dissociation of all C-C bonds.
We present a coupled cluster and linear response theory to compute properties of many-electron systems at non-zero temperatures. For this purpose, we make use of the thermofield dynamics, which allows for a compact wavefunction representation of the thermal density matrix, and extend our recently developed framework [J. Chem. Phys. 150, 154109 (2019)] to parameterize the so-called thermal state using an exponential ansatz with cluster operators that create thermal quasiparticle excitations on a mean-field reference. As benchmark examples, we apply this method to both model (one-dimensional Hubbard and Pairing) as well as ab-initio (atomic Beryllium and molecular Hydrogen) systems, while comparing with exact results.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا