Do you want to publish a course? Click here

Scene Learning: Deep Convolutional Networks For Wind Power Prediction by Embedding Turbines into Grid Space

145   0   0.0 ( 0 )
 Added by Zhiqiang Liu
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Wind power prediction is of vital importance in wind power utilization. There have been a lot of researches based on the time series of the wind power or speed, but In fact, these time series cannot express the temporal and spatial changes of wind, which fundamentally hinders the advance of wind power prediction. In this paper, a new kind of feature that can describe the process of temporal and spatial variation is proposed, namely, Spatio-Temporal Features. We first map the data collected at each moment from the wind turbine to the plane to form the state map, namely, the scene, according to the relative positions. The scene time series over a period of time is a multi-channel image, i.e. the Spatio-Temporal Features. Based on the Spatio-Temporal Features, the deep convolutional network is applied to predict the wind power, achieving a far better accuracy than the existing methods. Compared with the starge-of-the-art method, the mean-square error (MSE) in our method is reduced by 49.83%, and the average time cost for training models can be shortened by a factor of more than 150.



rate research

Read More

The transition from conventional methods of energy production to renewable energy production necessitates better prediction models of the upcoming supply of renewable energy. In wind power production, error in forecasting production is impossible to negate owing to the intermittence of wind. For successful power grid integration, it is crucial to understand the uncertainties that arise in predicting wind power production and use this information to build an accurate and reliable forecast. This can be achieved by observing the fluctuations in wind power production with changes in different parameters such as wind speed, temperature, and wind direction, and deriving functional dependencies for the same. Using optimized machine learning algorithms, it is possible to find obscured patterns in the observations and obtain meaningful data, which can then be used to accurately predict wind power requirements . Utilizing the required data provided by the Gamesas wind farm at Bableshwar, the paper explores the use of both parametric and the non-parametric models for calculating wind power prediction using power curves. The obtained results are subject to comparison to better understand the accuracy of the utilized models and to determine the most suitable model for predicting wind power production based on the given data set.
A deep neural network model is a powerful framework for learning representations. Usually, it is used to learn the relation $x to y$ by exploiting the regularities in the input $x$. In structured output prediction problems, $y$ is multi-dimensional and structural relations often exist between the dimensions. The motivation of this work is to learn the output dependencies that may lie in the output data in order to improve the prediction accuracy. Unfortunately, feedforward networks are unable to exploit the relations between the outputs. In order to overcome this issue, we propose in this paper a regularization scheme for training neural networks for these particular tasks using a multi-task framework. Our scheme aims at incorporating the learning of the output representation $y$ in the training process in an unsupervised fashion while learning the supervised mapping function $x to y$. We evaluate our framework on a facial landmark detection problem which is a typical structured output task. We show over two public challenging datasets (LFPW and HELEN) that our regularization scheme improves the generalization of deep neural networks and accelerates their training. The use of unlabeled data and label-only data is also explored, showing an additional improvement of the results. We provide an opensource implementation (https://github.com/sbelharbi/structured-output-ae) of our framework.
The creation of social ties is largely determined by the entangled effects of peoples similarities in terms of individual characters and friends. However, feature and structural characters of people usually appear to be correlated, making it difficult to determine which has greater responsibility in the formation of the emergent network structure. We propose emph{AN2VEC}, a node embedding method which ultimately aims at disentangling the information shared by the structure of a network and the features of its nodes. Building on the recent developments of Graph Convolutional Networks (GCN), we develop a multitask GCN Variational Autoencoder where different dimensions of the generated embeddings can be dedicated to encoding feature information, network structure, and shared feature-network information. We explore the interaction between these disentangled characters by comparing the embedding reconstruction performance to a baseline case where no shared information is extracted. We use synthetic datasets with different levels of interdependency between feature and network characters and show (i) that shallow embeddings relying on shared information perform better than the corresponding reference with unshared information, (ii) that this performance gap increases with the correlation between network and feature structure, and (iii) that our embedding is able to capture joint information of structure and features. Our method can be relevant for the analysis and prediction of any featured network structure ranging from online social systems to network medicine.
Traditional methods for solvability region analysis can only have inner approximations with inconclusive conservatism. Machine learning methods have been proposed to approach the real region. In this letter, we propose a deep active learning framework for power system solvability prediction. Compared with the passive learning methods where the training is performed after all instances are labeled, the active learning selects most informative instances to be label and therefore significantly reduce the size of labeled dataset for training. In the active learning framework, the acquisition functions, which correspond to different sampling strategies, are defined in terms of the on-the-fly posterior probability from the classifier. The IEEE 39-bus system is employed to validate the proposed framework, where a two-dimensional case is illustrated to visualize the effectiveness of the sampling method followed by the full-dimensional numerical experiments.
126 - Yongli Zhu 2021
This paper proposes a cascading failure mitigation strategy based on Reinforcement Learning (RL). The motivation of the Multi-Stage Cascading Failure (MSCF) problem and its connection with the challenge of climate change are introduced. The bottom-level corrective control of the MCSF problem is formulated based on DCOPF (Direct Current Optimal Power Flow). Then, to mitigate the MSCF issue by a high-level RL-based strategy, physics-informed reward, action, and state are devised. Besides, both shallow and deep neural network architectures are tested. Experiments on the IEEE 118-bus system by the proposed mitigation strategy demonstrate a promising performance in reducing system collapses.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا