The remarkable underlying ground states of cuprate superconductors


Abstract in English

Cuprates exhibit exceptionally strong superconductivity. To understand why, it is essential to elucidate the nature of the electronic interactions that cause pairing. Superconductivity occurs on the backdrop of several underlying electronic phases, including a doped Mott insulator at low doping, a strange metal at high doping, and an enigmatic pseudogap phase in between -- inside which a phase of charge-density-wave order appears. In this Article, we aim to shed light on the nature of these remarkable phases by focusing on the limit as $T to 0$, where experimental signatures and theoretical statements become sharper. We therefore survey the ground state properties of cuprates once superconductivity has been removed by the application of a magnetic field, and distill their key universal features.

Download