Unconventional field-effect transistor composed of electrons floating on liquid helium


Abstract in English

We report on an unconventional $macroscopic$ field effect transistor composed of electrons floating above the surface of superfluid helium. With this device unique transport regimes are realized in which the charge density of the electron layer can be controlled in a manner not possible in other material systems. In particular, we are able to manipulate the collective behavior of the electrons to produce a highly non-uniform, but precisely controlled, charge density to reveal a negative source-drain current. This behavior can be understood by considering the propagation of damped charge oscillations along a transmission line formed by the inhomogeneous sheet of two-dimensional electrons above, and between, the source and drain electrodes of the transistor.

Download