No Arabic abstract
We show that a Wilson-type discretization of the Gross-Neveu model, a fermionic N-flavor quantum field theory displaying asymptotic freedom and chiral symmetry breaking, can serve as a playground to explore correlated symmetry-protected phases of matter using techniques borrowed from high-energy physics. A large- N study, both in the Hamiltonian and Euclidean formalisms, yields a phase diagram with trivial, topological, and symmetry-broken phases separated by critical lines that meet at a tri-critical point. We benchmark these predictions using tools from condensed matter and quantum information science, which show that the large-N method captures the essence of the phase diagram even at N = 1. Moreover, we describe a cold-atom scheme for the quantum simulation of this lattice model, which would allow to explore the single-flavor phase diagram.
We propose and analyze two distinct routes toward realizing interacting symmetry-protected topological (SPT) phases via periodic driving. First, we demonstrate that a driven transverse-field Ising model can be used to engineer complex interactions which enable the emulation of an equilibrium SPT phase. This phase remains stable only within a parametric time scale controlled by the driving frequency, beyond which its topological features break down. To overcome this issue, we consider an alternate route based upon realizing an intrinsically Floquet SPT phase that does not have any equilibrium analog. In both cases, we show that disorder, leading to many-body localization, prevents runaway heating and enables the observation of coherent quantum dynamics at high energy densities. Furthermore, we clarify the distinction between the equilibrium and Floquet SPT phases by identifying a unique micromotion-based entanglement spectrum signature of the latter. Finally, we propose a unifying implementation in a one-dimensional chain of Rydberg-dressed atoms and show that protected edge modes are observable on realistic experimental time scales.
The second law of thermodynamics points to the existence of an `arrow of time, along which entropy only increases. This arises despite the time-reversal symmetry (TRS) of the microscopic laws of nature. Within quantum theory, TRS underpins many interesting phenomena, most notably topological insulators and the Haldane phase of quantum magnets. Here, we demonstrate that such TRS-protected effects are fundamentally unstable against coupling to an environment. Irrespective of the microscopic symmetries, interactions between a quantum system and its surroundings facilitate processes which would be forbidden by TRS in an isolated system. This leads not only to entanglement entropy production and the emergence of macroscopic irreversibility, but also to the demise of TRS-protected phenomena, including those associated with certain symmetry-protected topological phases. Our results highlight the enigmatic nature of TRS in quantum mechanics, and elucidate potential challenges in utilising topological systems for quantum technologies.
Recent study predicts that structural disorder, serving as a bridge connecting a crystalline material to an amorphous material, can induce a topological insulator from a trivial phase. However, to experimentally observe such a topological phase transition is very challenging due to the difficulty in controlling structural disorder in a quantum material. Given experimental realization of randomly positioned Rydberg atoms, such a system is naturally suited to studying structural disorder induced topological phase transitions and topological amorphous phases. Motivated by the development, we study topological phases in an experimentally accessible one-dimensional amorphous Rydberg atom chain with random atom configurations. In the single-particle level, we find symmetry-protected topological amorphous insulators and a structural disorder induced topological phase transition, indicating that Rydberg atoms provide an ideal platform to experimentally observe the phenomenon using state-of-the-art technologies. Furthermore, we predict the existence of a gapless symmetry-protected topological phase of interacting bosons in the experimentally accessible system. The resultant many-body topological amorphous phase is characterized by a $mathbb{Z}_2$ invariant and the density distribution.
We study classification of interacting fermionic symmetry-protected topological (SPT) phases with both rotation symmetry and Abelian internal symmetries in one, two, and three dimensions. By working out this classification, on the one hand, we demonstrate the recently proposed correspondence principle between crystalline topological phases and those with internal symmetries through explicit block-state constructions. We find that for the precise correspondence to hold it is necessary to change the central extension structure of the symmetry group by the $mathbb{Z}_2$ fermion parity. On the other hand, we uncover new classes of intrinsically fermionic SPT phases that are only enabled by interactions, both in 2D and 3D with four-fold rotation. Moreover, several new instances of Lieb-Schultz-Mattis-type theorems for Majorana-type fermionic SPTs are obtained and we discuss their interpretations from the perspective of bulk-boundary correspondence.
Universal driving protocol for symmetry-protected Floquet topological phasesWe propose a universal driving protocol for the realization of symmetry-protected topological phases in $2+1$ dimensional Floquet systems. Our proposal is based on the theoretical analysis of the possible symmetries of a square lattice model with pairwise nearest-neighbor coupling terms. Among the eight possible symmetry operators we identify the two relevant choices for topological phases with either time-reversal, chiral, or particle-hole symmetry. From the corresponding symmetry conditions on the protocol parameters, we obtain the universal driving protocol where each of the symmetries can be realized or broken individually. We provide specific parameter values for the different cases, and demonstrate the existence of symmetry-protected copropagating and counterpropagating topological boundary states. The driving protocol especially allows us to switch between bosonic and fermionic time-reversal symmetry, and thus between a trivial and non-trivial symmetry-protected topological phase, through continuous variation of a parameter.