Do you want to publish a course? Click here

Time-time covariance for last passage percolation with generic initial profile

57   0   0.0 ( 0 )
 Added by Patrik L. Ferrari
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider time correlation for KPZ growth in 1+1 dimensions in a neighborhood of a characteristics. We prove convergence of the covariance with droplet, flat and stationary initial profile. In particular, this provides a rigorous proof of the exact formula of the covariance for the stationary case obtained in [SIGMA 12 (2016), 074]. Furthermore, we prove the universality of the first order correction when the two observation times are close and provide a rigorous bound of the error term. This result holds also for random initial profiles which are not necessarily stationary.



rate research

Read More

We obtain an exact finite-size expression for the probability that a percolation hull will touch the boundary, on a strip of finite width. Our calculation is based on the q-deformed Knizhnik--Zamolodchikov approach, and the results are expressed in terms of symplectic characters. In the large size limit, we recover the scaling behaviour predicted by Schramms left-passage formula. We also derive a general relation between the left-passage probability in the Fortuin--Kasteleyn cluster model and the magnetisation profile in the open XXZ chain with diagonal, complex boundary terms.
In this paper we consider an equilibrium last-passage percolation model on an environment given by a compound two-dimensional Poisson process. We prove an $LL^2$-formula relating the initial measure with the last-passage percolation time. This formula turns out to be a useful tool to analyze the fluctuations of the last-passage times along non-characteristic directions.
In this paper we study stationary last passage percolation (LPP) in half-space geometry. We determine the limiting distribution of the last passage time in a critical window close to the origin. The result is a new two-parameter family of distributions: one parameter for the strength of the diagonal bounding the half-space (strength of the source at the origin in the equivalent TASEP language) and the other for the distance of the point of observation from the origin. It should be compared with the one-parameter family giving the Baik--Rains distributions for full-space geometry. We finally show that far enough away from the characteristic line, our distributions indeed converge to the Baik--Rains family. We derive our results using a related integrable model having Pfaffian structure together with careful analytic continuation and steepest descent analysis.
These lecture notes are written as reference material for the Advanced Course Hydrodynamical Methods in Last Passage Percolation Models, given at the 28th Coloquio Brasileiro de Matematica at IMPA, Rio de Janeiro, July 2011.
93 - Dan Betea 2018
In this note we give a(nother) combinatorial proof of an old result of Baik--Rains: that for appropriately considered independent geometric weights, the generating series for last passage percolation polymers in a $2n times n times n$ quarter square (point-to-half-line-reflected geometry) splits as the product of two simpler generating series---that for last passage percolation polymers in a point-to-line geometry and that for last passage percolation in a point-to-point-reflected (half-space) geometry, the latter both in an $n times n times n$ triangle. As a corollary, for iid geometric random variables---of parameter $q$ off-diagonal and parameter $sqrt{q}$ on the diagonal---we see that the last passage percolation time in said quarter square obeys Tracy--Widom $mathrm{GOE}^2$ fluctuations in the large $n$ limit as both the point-to-line and the point-to-point-reflected geometries have known GOE fluctuations. This is a discrete analogue of a celebrated Baik--Rains theorem (the limit $q to 0$) and more recently of results from Bisis PhD thesis (the limit $q to 1$).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا