Do you want to publish a course? Click here

Shocked POststarburst Galaxy Survey. III. The Ultraviolet Properties of SPOGs

71   0   0.0 ( 0 )
 Added by Felipe Ardila
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Shocked POststarburst Galaxy Survey (SPOGS) aims to identify galaxies in the transitional phase between actively star-forming and quiescence with nebular lines that are excited from shocks rather than star formation processes. We explored the ultraviolet (UV) properties of objects with near-ultraviolet (NUV) and far-ultraviolet (FUV) photometry from archival GALEX data; 444 objects were detected in both bands, 365 in only NUV, and 24 in only FUV, for a total of 833 observed objects. We compared SPOGs to samples of Star-forming galaxies (SFs), Quiescent galaxies (Qs), classical E+A post-starburst galaxies, active galactic nuclei (AGN) host galaxies, and interacting galaxies. We found that SPOGs have a larger range in their FUV-NUV and NUV-r colors compared to most of the other samples, although all of our comparison samples occupied color space inside of the SPOGs region. Based on their UV colors, SPOGs are a heterogeneous group, possibly made up of a mixture of SFs, Qs, and/or AGN. Using Gaussian mixture models, we are able to recreate the distribution of FUV-NUV colors of SPOGs and E+A galaxies with different combinations of SFs, Qs, and AGN. We find that the UV colors of SPOGs require a >60% contribution from SFs, with either Qs or AGN representing the remaining contribution, while UV colors of E+A galaxies required a significantly lower fraction of SFs, supporting the idea that SPOGs are at an earlier point in their transition from quiescent to star-forming than E+A galaxies.



rate research

Read More

We present CO(1-0) observations of objects within the Shocked POststarburst Galaxy Survey taken with the Institut de Radioastronomie Millimetrique (IRAM) 30m single dish and the Combined Array for Research for Millimeter Astronomy (CARMA) interferometer. Shocked Poststarburst Galaxies (SPOGs) represent a transitioning population of galaxies, with deep Balmer absorption (Hdelta>5A), consistent with an intermediate-age (A-star) stellar population, and ionized gas line ratios inconsistent with pure star formation. The CO(1-0) subsample was selected from SPOGs detected by the Wide-field Infrared Survey Explorer with 22um flux detected at a signal-to-noise (S/N)>3. Of the 52 objects observed in CO(1-0), 47 are detected with S/N>3. A large fraction (37-46%) of our CO-SPOG sample were visually classified as morphologically disrupted. The H2 masses detected were between 10^(8.7-10.8) Msuns, consistent with the gas masses found in normal galaxies, though approximately an order of magnitude larger than the range seen in poststarburst galaxies. When comparing the 22um and CO(1-0) fluxes, SPOGs diverge from the normal star-forming relation, having 22um fluxes in excess by a factor of <EMIR,SPOG>=4.91+0.42-0.39. The Na I D characteristics of CO-SPOGs show that it is likely that many of these objects host interstellar winds. Objects with the large Na I D enhancements also tend to emit in the radio, suggesting possible AGN-driving of neutral winds.
(Abridged) We present a systematic investigation of physical conditions and elemental abundances in four optically thick Lyman-limit systems (LLSs) at $z=0.36-0.6$ discovered within the Cosmic Ultraviolet Baryon Survey (CUBS). CUBS LLSs exhibit multi-component kinematic structure and a complex mix of multiphase gas, with associated metal transitions from multiple ionization states that span several hundred km/s in line-of-sight velocity. Specifically, higher column density components (log N(HI)>16) in all four absorbers comprise dynamically cool gas with $langle T rangle =(2pm1) times10^4,$K and modest non-thermal broadening of $5pm3,$ km/s. The high quality of the QSO absorption spectra allows us to infer the physical conditions of the gas, using a detailed ionization modeling that takes into account the resolved component structures of HI and metal transitions. The range of inferred gas densities indicates that these absorbers consist of spatially compact clouds with a median line-of-sight thickness of $160^{+140}_{-50}$ pc. While obtaining robust metallicity constraints for the low-density, highly ionized phase remains challenging due to the uncertain N(HI), we demonstrate that the cool-phase gas in LLSs has a median metallicity of $mathrm{[alpha/H]_{1/2}}=-0.7^{+0.1}_{-0.2}$, with a 16-84 percentile range of $mathrm{[alpha/H]}=(-1.3,-0.1)$. Furthermore, the wide range of inferred elemental abundance ratios ($mathrm{[C/alpha]}$, $mathrm{[N/alpha]}$, and $mathrm{[Fe/alpha]}$) indicate a diversity of chemical enrichment histories. Combining the absorption data with deep galaxy survey data characterizing the galaxy environment of these absorbers, we discuss the physical connection between star-forming regions in galaxies and diffuse gas associated with optically thick absorption systems in the $z<1$ circumgalactic medium.
103 - K. Alatalo , L. Lanz (3 2016
We investigate the optical and Wide-field Survey Explorer (WISE) colors of E+A identified post-starburst galaxies, including a deep analysis on 190 post-starbursts detected in the 2{mu}m All Sky Survey Extended Source Catalog. The post-starburst galaxies appear in both the optical green valley and the WISE Infrared Transition Zone (IRTZ). Furthermore, we find that post-starbursts occupy a distinct region [3.4]-[4.6] vs. [4.6]-[12] WISE colors, enabling the identification of this class of transitioning galaxies through the use of broad-band photometric criteria alone. We have investigated possible causes for the WISE colors of post-starbursts by constructing a composite spectral energy distribution (SED), finding that mid-infrared (4-12{mu}m) properties of post-starbursts are consistent with either 11.3{mu}m polycyclic aromatic hydrocarbon emission, or Thermally Pulsating Asymptotic Giant Branch (TP-AGB) and post-AGB stars. The composite SED of extended post- starburst galaxies with 22{mu}m emission detected with signal to noise >3 requires a hot dust component to produce their observed rising mid-infrared SED between 12 and 22{mu}m. The composite SED of WISE 22{mu}m non-detections (S/N<3), created by stacking 22{mu}m images, is also flat, requiring a hot dust component. The most likely source of this mid-infrared emission of these E+A galaxies is a buried active galactic nucleus. The inferred upper limit to the Eddington ratios of post-starbursts are 1e-2 to 1e-4, with an average of 1e-3. This suggests that AGNs are not radiatively dominant in these systems. This could mean that including selections able to identify active galactic nuclei as part of a search for transitioning and post-starburst galaxies would create a more complete census of the transition pathways taken as a galaxy quenches its star formation.
We present the first 3D spectroscopic observations of a nearby HI detected poststarburst, or E+A, galaxy, SDSS J230743.41+152558.4, obtained with the VIMOS IFU spectrograph at ESO VLT. Using the NBursts full spectral fitting technique, we derive maps of stellar kinematics, age, and metallicity out to 2-3 half-light radii. Our analysis reveals a large-scale rapidly rotating disc (v_circ = 300km/s) with a positive age gradient (0.6 to 1.5 Gyr), and a very metal-rich central region ([Fe/H]=+0.25 dex). If a merger or interaction is responsible for triggering the starburst, the presence of this undisturbed disc suggests a minor merger with a gas-rich satellite as the most plausible option, rather than a disruptive major merger. We find spectroscopic evidence for the presence of a LINER or AGN. This is an important clue to the feedback mechanism that truncated the starburst. The presently observed quiescent phase may well be a temporary episode in the galaxys life. SDSS J230743.41+152558.4 is gas-rich and may restart forming stars, again becoming blue before finally settling at the red sequence.
We present the initial results of a census of 684 barred galaxies in the MaNGA galaxy survey. This large sample contains galaxies with a wide range of physical properties, and we attempt to link bar properties to key observables for the whole galaxy. We find the length of the bar, when normalised for galaxy size, is correlated with the distance of the galaxy from the star formation main sequence, with more passive galaxies hosting larger-scale bars. Ionised gas is observed along the bars of low-mass galaxies only, and these galaxies are generally star-forming and host short bars. Higher-mass galaxies do not contain H{alpha} emission along their bars, however, but are more likely to host rings or H{alpha} at the centre and ends of the bar. Our results suggest that different physical processes are at play in the formation and evolution of bars in low- and high-mass galaxies.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا