Do you want to publish a course? Click here

Global and optimal probes for the top-quark effective field theory at future lepton colliders

86   0   0.0 ( 0 )
 Added by Gauthier Durieux
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We study the sensitivity to physics beyond the standard model of precise top-quark pair production measurements at future lepton colliders. A global effective-field-theory approach is employed, including all dimension-six operators of the Warsaw basis which involve a top-quark and give rise to tree-level amplitudes that interfere with standard-model $e^+e^-to t,bar tto bW^+bar bW^-$ ones in the limit of vanishing $b$-quark mass. Four-fermion and CP-violating contributions are taken into account. Circular-collider-, ILC- and CLIC-like benchmark run scenarios are examined. We compare the constraining power of various observables to a set of statistically optimal ones which maximally exploit the information contained in the fully differential $bW^+bar bW^-$ distribution. The enhanced sensitivity gained on the linear contributions of dimension-six operators leads to bounds that are insensitive to quadratic ones. Even with statistically optimal observables, two centre-of-mass energies are required for constraining simultaneously two- and four-fermion operators. The impact of the centre-of-mass energy lever arm is discussed, that of beam polarization as well. A realistic estimate of the precision that can be achieved in ILC- and CLIC-like operating scenarios yields individual limits on the electroweak couplings of the top quark that are one to three orders of magnitude better than constraints set with Tevatron and LHC run I data, and three to two hundred times better than the most optimistic projections made for the high-luminosity phase of the LHC. Clean global constraints can moreover be obtained at lepton colliders, robustly covering the multidimensional effective-field-theory space with minimal model dependence.



rate research

Read More

256 - Gauthier Durieux 2017
We examine the constraints that future lepton colliders would impose on the effective field theory describing modifications of top-quark interactions beyond the standard model, through measurements of the $e^+e^-to bW^+:bar bW^-$ process. Statistically optimal observables are exploited to constrain simultaneously and efficiently all relevant operators. Their constraining power is sufficient for quadratic effective-field-theory contributions to have negligible impact on limits which are therefore basis independent. This is contrasted with the measurements of cross sections and forward-backward asymmetries. An overall measure of constraints strength, the global determinant parameter, is used to determine which run parameters impose the strongest restriction on the multidimensional effective-field-theory parameter space.
In composite Higgs (CH) models, large mixings between the top quark and the new strongly interacting sector are required to generate its sizeable Yukawa coupling. Precise measurements involving top as well as left-handed bottom quarks therefore offer an interesting opportunity to probe such new physics scenarios. We study the impact of third-generation-quark pair production at future lepton colliders, translating prospective effective-field-theory sensitivities into the CH parameter space. Our results show that one can probe a significant fraction of the natural CH parameter space through the top portal, especially at TeV centre-of-mass energies.
Effective field theory (EFT) approaches are widely used at the LHC, such that it is important to study their validity, and ease of matching to specific new physics models. In this paper, we consider an extension of the SM in which a top quark couples to a new heavy scalar. We find the dimension six operators generated by this theory at low energy, and match the EFT to the full theory up to NLO precision in the simplified model coupling. We then examine the range of validity of the EFT description in top pair production, finding excellent validity even if the scalar mass is only slightly above LHC energies, provided NLO corrections are included. In the absence of the latter, the LO EFT overestimates kinematic distributions, such that over-optimistic constraints on BSM contributions are obtained. We next examine the constraints on the EFT and full models that are expected to be obtained from both top pair and four top production at the LHC, finding for low scalar masses that both processes show similar exclusion power. However, for larger masses, estimated LHC uncertainties push constraints into the non-perturbative regime, where the full model is difficult to analyse, and thus not perturbatively matchable to the EFT. This highlights the necessity to improve uncertainties of SM hypotheses in top final states.
We present a novel framework for carrying out global analyses of the Standard Model Effective Field Theory (SMEFT) at dimension-six: SMEFiT. This approach is based on the Monte Carlo replica method for deriving a faithful estimate of the experimental and theoretical uncertainties and enables one to construct the probability distribution in the space of the SMEFT degrees of freedom. As a proof of concept of the SMEFiT methodology, we present a first study of the constraints on the SMEFT provided by top quark production measurements from the LHC. Our analysis includes more than 30 independent measurements from 10 different processes at 8 and 13 TeV such as inclusive top-quark pair and single-top production and the associated production of top quarks with weak vector bosons and the Higgs boson. State-of-the-art theoretical calculations are adopted both for the Standard Model and for the SMEFT contributions, where in the latter case NLO QCD corrections are included for the majority of processes. We derive bounds for the 34 degrees of freedom relevant for the interpretation of the LHC top quark data and compare these bounds with previously reported constraints. Our study illustrates the significant potential of LHC precision measurements to constrain physics beyond the Standard Model in a model-independent way, and paves the way towards a global analysis of the SMEFT.
This paper presents a combined analysis of the potential of a future electron-positron collider to constrain the Higgs, top and electro-weak (EW) sectors of the Standard Model Effective Field Theory (SMEFT). The leading contributions of operators involving top quarks arise mostly at one-loop suppressed order and can be captured by the renormalization group mixing with Higgs operators. We perform global fits with an extended basis of 29 parameters, including both Higgs and top operators, to the projections for the Higgs, top and electro-weak precision measurements at the International Linear Collider (ILC). The determination of the Higgs boson couplings in the 250 GeV stage of the ILC is initially severely degraded by the additional top-quark degrees of freedom, but can be nearly completely recovered by the inclusion of precise measurements of top-quark EW couplings at the LHC. The physical Higgs couplings are relatively robust, as the top mass is larger than the energy scale of EW processes. The effect of the top operators on the bounds on the Wilson coefficients is much more pronounced and may limit our ability to identify the source of deviations from the Standard Model. Robust global bounds on all Wilson coefficients are only obtained when the 500 GeV stage of the ILC is included.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا