No Arabic abstract
The finite cell method (FCM) belongs to the class of immersed boundary methods, and combines the fictitious domain approach with high-order approximation, adaptive integration and weak imposition of unfitted Dirichlet boundary conditions. For the analysis of complex geometries, it circumvents expensive and potentially error-prone meshing procedures, while maintaining high rates of convergence. The present contribution provides an overview of recent accomplishments in the FCM with applications in structural mechanics. First, we review the basic components of the technology using the p- and B-spli
The (Isogeometric) Finite Cell Method - in which a domain is immersed in a structured background mesh - suffers from conditioning problems when cells with small volume fractions occur. In this contribution, we establish a rigorous scaling relation between the condition number of (I)FCM system matrices and the smallest cell volume fraction. Ill-conditioning stems either from basis functions being small on cells with small volume fractions, or from basis functions being nearly linearly dependent on such cells. Based on these two sources of ill-conditioning, an algebraic preconditioning technique is developed, which is referred to as Symmetric Incomplete Permuted Inverse Cholesky (SIPIC). A detailed numerical investigation of the effectivity of the SIPIC preconditioner in improving (I)FCM condition numbers and in improving the convergence speed and accuracy of iterative solvers is presented for the Poisson problem and for two- and three-dimensional problems in linear elasticity, in which Nitches method is applied in either the normal or tangential direction. The accuracy of the preconditioned iterative solver enables mesh convergence studies of the finite cell method.
Structural analysis is a method for verifying equation-oriented models in the design of industrial systems. Existing structural analysis methods need flattening the hierarchical models into an equation system for analysis. However, the large-scale equations in complex models make the structural analysis difficult. Aimed to address the issue, this study proposes a hierarchical structural analysis method by exploring the relationship between the singularities of the hierarchical equation-oriented model and its components. This method obtains the singularity of a hierarchical equation-oriented model by analyzing the dummy model constructed with the parts from the decomposing results of its components. Based on this, the structural singularity of a complex model can be obtained by layer-by-layer analysis according to their natural hierarchy. The hierarchical structural analysis method can reduce the equation scale in each analysis and achieve efficient structural analysis of very complex models. This method can be adaptively applied to nonlinear algebraic and differential-algebraic equation models. The main algorithms, application cases, and comparison with the existing methods are present in the paper. Complexity analysis results show the enhanced efficiency of the proposed method in structural analysis of complex equation-oriented models. As compared with the existing methods, the time complexity of the proposed method is improved significantly.
In this paper, several projection method based preconditioners for various incompressible flow models are studied. In particular, we are interested in the theoretical analysis of a pressure-correction projection method based preconditioner cite{griffith2009accurate}. For both the steady and unsteady Stokes problems, we will show that the preconditioned systems are well conditioned. Moreover, when the flow model degenerates to the mixed form of an elliptic operator, the preconditioned system is an identity no matter what type of boundary conditions are imposed; when the flow model degenerates to the steady Stokes problem, the multiplicities of the non-unitary eigenvalues of the preconditioned system are derived. These results demonstrate the effects of boundary treatments and are related to the stability of the staggered grid discretization. To further investigate the effectiveness of these projection method based preconditioners, numerical experiments are given to compare their performances. Generalizations of these preconditioners to other saddle point problems will also be discussed.
In this paper, we present a new full-discrete finite element method for the heat equation, and show the numerical stability of the method by verified computations. Since, in the error analysis, we use the constructive error estimates proposed ny Nakao et. all in 2013, this work is considered as an extention of that paper. We emphasize that concerned scheme seems to be a quite normal Galerkin method and easy to implement for evolutionary equations comparing with previous one. In the constructive error estimates, we effectively use the numerical computations with guaranteed accuracy.
We study the weak finite element method solving convection-diffusion equations. A weak finite element scheme is presented based on a spacial variational form. We established a weak embedding inequality that is very useful in the weak finite element analysis. The optimal order error estimates are derived in the discrete $H^1$-norm, the $L_2$-norm and the $L_infty$-norm, respectively. In particular, the $H^1$-superconvergence of order $k+2$ is given under certain condition. Finally, numerical examples are provided to illustrate our theoretical analysis