No Arabic abstract
We present a flexible and efficient ultrafast time-resolved spontaneous Raman spectroscopy setup to study collective excitation and quasi-particle dynamics in quantum matter. The setup has a broad energy tuning range extending from the visible to near infrared spectral regions for both the pump excitation and Raman probe pulses. Additionally, the balance between energy and time-resolution can be controlled. A high light collecting efficiency is realized by high numerical aperture collection optics and a high-throughput flexible spectrometer. We demonstrate the functionality of the setup with a study of the zone-center longitudinal optical phonon and hole continuum dynamics in silicon, and discuss the role of the Raman tensor in time-resolved Raman scattering. In addition, we show evidence for unequal phonon softening rates at different high symmetry points in the Brillouin zone of silicon by means of detecting pump-induced changes in the two-phonon overtone spectrum. Demagnetization dynamics in the helimagnet Cu2OSeO3 is studied by observing softening and broadening of a magnon after photo-excitation, underlining the unique power of measuring transient dynamics in the frequency domain, and the feasibility to study phase transitions in quantum matter.
Time-resolved spontaneous Raman spectroscopy serves as a probe for incoherent quasiparticle and collective excitation dynamics, and allows to distinguish symmetry changes across a photoinduced phase transition through the inelastic light scattering selection rules. Largely unexplored is the role of the Raman resonance enhancement in the time-domain, and the transient interaction between scattering from quasiparticles and collective excitations, with the latter interaction leading to a Fano interference. In this work, we report on the observation of a phonon Raman tensor quench and Fano interference after strong photoexcitation of an intrinsic semiconductor. We observed a dynamic phonon scattering rate asymmetry and spectral asymmetry through simultaneous detection of both the anti-Stokes and Stokes response. The asymmetric phonon scattering rate is ascribed to the combined effect of the transient phonon population and the reduction of the phonon Raman tensor resulting from the photoexcited hole population. This same hole population results in a strong enhancement of the Fano spectral asymmetry.
We characterize the topological insulator Bi$_2$Se$_3$ using time- and angle- resolved photoemission spectroscopy. By employing two-photon photoemission, a complete picture of the unoccupied electronic structure from the Fermi level up to the vacuum level is obtained. We demonstrate that the unoccupied states host a second, Dirac surface state which can be resonantly excited by 1.5 eV photons. We then study the ultrafast relaxation processes following optical excitation. We find that they culminate in a persistent non-equilibrium population of the first Dirac surface state, which is maintained by a meta-stable population of the bulk conduction band. Finally, we perform a temperature-dependent study of the electron-phonon scattering processes in the conduction band, and find the unexpected result that their rates decrease with increasing sample temperature. We develop a model of phonon emission and absorption from a population of electrons, and show that this counter-intuitive trend is the natural consequence of fundamental electron-phonon scattering processes. This analysis serves as an important reminder that the decay rates extracted by time-resolved photoemission are not in general equal to single electron scattering rates, but include contributions from filling and emptying processes from a continuum of states.
A Weyl semimetal is a new type of topological quantum phase with intriguing physics near the Weyl nodes. Although the equilibrium state of Weyl semimetals has been investigated, the ultrafast dynamics near the Weyl node in the nonequilibrium state is still missing. Here by performing time and angle resolved photoemission spectroscopy on type-II Weyl semimetal MoTe$_2$, we reveal the dispersion of the unoccupied states and identify the Weyl node at 70 meV above E$_F$. Moreover, by tracking the ultrafast relaxation dynamics near the Weyl node upon photo-excitation with energy, momentum and temporal resolution, two intrinsic recovery timescales are observed, a fast one of 430 fs and a slow one of 4.1 ps, which are associated with hot electron cooling by optical phonon cascade emission and anharmonic decay of hot optical phonons respectively. The electron population shows a metallic response, and the two temperature model fitting of the transient electronic temperature gives an electron-phonon coupling constant of $lambdalangleOmega^2ranglesimeq32$ $textrm{meV}^2$. Our work provides important dynamic information for understanding the relaxation mechanism of a Weyl semimetal and for exploiting potential applications using ultrafast optical control.
High-resolution angle-resolved photoemission spectroscopy and ultrafast optical pump-probe spectroscopy were used to study semimetallic 1T - TiTe2 quasiparticle dispersion and dynamics. A kink and a flat band, having the same energy scale and temperature-dependent behaviors along the G-M direction, were detected. Both manifested at low temperatures but blurred as temperature increased. The kink was formed by an electron-phonon coupling. And the localized flat band might be closely related to an electron-phonon coupling. Ultrafast optical spectroscopy identified multiple distinct time scales in the 10-300 K range. Quantitative analysis of the fastest decay process evidenced a significant lifetime temperature dependence at high temperatures, while this starts to change slowly below ~ 100 K where an anomalous Hall coefficient occurred. At low temperature, a coherent A1g phonon mode with a frequency of ~ 4.36 THz was extracted. Frequency temperature dependence suggests that phonon hardening occurs as temperature falls and anharmonic effects can explain it. Frequency fluence dependence indicates that the phonons soften as fluence increases.
The notion of a quasiparticle, such as a phonon, a roton, or a magnon, is used in modern condensed matter physics to describe an elementary collective excitation. The intrinsic zero-temperature magnon damping in quantum spin systems can be driven by the interaction of the one-magnon states and multi-magnon continuum. However, detailed experimental studies on this quantum many-body effect induced by an applied magnetic field are rare. Here we present a high-resolution neutron scattering study in high fields on an S=1/2 antiferromagnet C9H18N2CuBr4. Compared with the non-interacting linear spin-wave theory, our results demonstrate a variety of phenomena including field-induced renormalization of one-magnon dispersion, spontaneous magnon decay observed via intrinsic linewidth broadening, unusual non-Lorentzian two-peak structure in the excitation spectra, and a dramatic shift of spectral weight from one-magnon state to the two-magnon continuum.