Do you want to publish a course? Click here

The WFC3 Galactic Bulge Treasury Program: Relative Ages of Bulge Stars of High and Low Metallicity

74   0   0.0 ( 0 )
 Added by Alvio Renzini
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The HST/WFC3 multiband photometry spanning from the UV to the near-IR of four fields in the Galactic bulge, together with that for six template globular and open clusters, are used to photometrically tag the metallicity [Fe/H] of stars in these fields after proper-motion rejecting most foreground disk contaminants. Color-magnitude diagrams and luminosity functions are then constructed, in particular for the most metal rich and most metal poor stars in each field. We do not find any significant difference between the $I$-band and $H$-band luminosity functions, hence turnoff luminosity and age, of the metal rich and metal poor components which therefore appear essentially coeval. In particular, we find that no more than $sim 3%$ of the metal-rich component can be $sim 5$ Gyr old, or younger. Conversely, theoretical luminosity functions give a good match to the observed ones for an age of ~10 Gyr. Assuming this age is representative for the bulk of bulge stars, we then recall the observed properties of star-forming galaxies at 10 Gyr lookback time, i.e., at z~2, and speculate about bulge formation in that context. We argue that bar formation and buckling instabilities leading to the observed boxy/peanut, X-shaped bulge may have arisen late in the history of the Milky Way galaxy, once its gas fraction had decreased compared to the high values typical of high-redshift galaxies. This paper follows the public release of the photometric and astrometric catalogs for the measured stars in the four fields.



rate research

Read More

We present new UV-to-IR stellar photometry of four low-extinction windows in the Galactic bulge, obtained with the Wide Field Camera 3 on the Hubble Space Telescope (HST). Using our five bandpasses, we have defined reddening-free photometric indices sensitive to stellar effective temperature and metallicity. We find that the bulge populations resemble those formed via classical dissipative collapse: each field is dominated by an old (~10 Gyr) population exhibiting a wide metallicity range (-1.5 < [Fe/H] < 0.5). We detect a metallicity gradient in the bulge population, with the fraction of stars at super-solar metallicities dropping from 41% to 35% over distances from the Galactic center ranging from 0.3 to 1.2 kpc. One field includes candidate exoplanet hosts discovered in the SWEEPS HST transit survey. Our measurements for 11 of these hosts demonstrate that exoplanets in the distinct bulge environment are preferentially found around high-metallicity stars, as in the solar neighborhood, supporting the view that planets form more readily in metal-rich environments.
[Abridged] When WFC3 is installed on HST, the community will have powerful new tools for investigating resolved stellar populations. The WFC3 Galactic Bulge Treasury program will obtain deep imaging on 4 low-extinction fields. These non-proprietary data will enable a variety of science investigations not possible with previous data sets. To aid in planning for the use of these data and for future proposals, we provide an introduction to the program, its photometric system, and the associated calibration effort. The observing strategy is based upon a new 5-band photometric system spanning the UV, optical, and near-infrared. With these broad bands, one can construct reddening-free indices of Teff and [Fe/H]. Besides the 4 bulge fields, the program will target 6 fields in well-studied star clusters, spanning a wide range of [Fe/H]. The cluster data serve to calibrate the indices, provide population templates, and correct the transformation of isochrones into the WFC3 photometric system. The bulge data will shed light on the bulge formation history, and will also serve as population templates for other studies. One of the fields includes 12 candidate hosts of extrasolar planets. CMDs are the most popular tool for analyzing resolved stellar populations. However, due to degeneracies among Teff, [Fe/H], and reddening in traditional CMDs, it can be difficult to draw robust conclusions from the data. The 5-band system used for the bulge Treasury observations will provide indices that are roughly orthogonal in Teff and [Fe/H], and we argue that model fitting in an index-index diagram will make better use of the information than fitting separate CMDs. We provide simulations to show the expected data quality and the potential for differentiating between different star-formation histories.
Several recent studies have demonstrated that the Galactic bulge hosts two components with different mean metallicities, and possibly different spatial distribution and kinematics. As a consequence, both the metallicity distribution and the radial velocity of bulge stars vary across different line of sights. We present here the metallicity distribution function of red clump stars in 26 fields spread across a wide area of the bulge, with special emphasis on fields close to Galactic plane, at latitudes b=-2 and b=-1, that were not explored before. This paper includes new metallicities from a sample of about 5000 K giant stars, observed at spectral resolution R=6500, in the Calcium II Triplet region. They are the main dataset of the GIRAFFE Inner Bulge Survey. As part of the same survey we have previously published results for a sample of about 600 K giant stars, at latitude b=-4 , derived from higher resolution spectra (R=22,500). Results. The combined sample allows us to trace and characterize the metal poor and metal rich bulge populations down to the inner bulge. We present a density map for each of the two components. Contrary to the expectations from previous works, we found the metal poor population to be more centrally concentrated than the metal rich one, and with a more axisymmetric spatial distribution. The metal rich population, on the other hand, is arranged in a boxy distribution, consistent with an edge-on bar. By coupling metallicities and radial velocities we show that the metal poor population has a velocity dispersion that varies rather mildly with latitude. On the contrary, the metal rich population has a low velocity dispersion far from the plane (b=-8.5), but it has a steeper gradient with latitude, becoming higher than the metal poor one in the innermost field (b=-1). [abridged]
The Galactic Bulge region is a rich host of variable high-energy point sources. These sources include bright and relatively faint X-ray transients, X-ray bursters, persistent neutron star and black-hole candidate binaries, X-ray pulsars, etc.. We have a program to monitor the Galactic Bulge region regularly and frequently with the gamma-ray observatory INTEGRAL. As a service to the scientific community the high-energy light curves of all the active sources as well as images of the region are made available through the WWW. We show the first results of this exciting new program.
We take advantage of the Gaia-ESO Survey iDR4 bulge data to search for abundance anomalies that could shed light on the composite nature of the Milky Way bulge. The alpha-elements (Mg, Si, and whenever available, Ca) abundances, and their trends with Fe abundances have been analysed for a total of 776 bulge stars. In addition, the aluminum abundances and their ratio to Fe and Mg have also been examined. Our analysis reveals the existence of low-alpha element abundance stars with respect to the standard bulge sequence in the [alpha/Fe] vs. [Fe/H] plane. 18 objects present deviations in [alpha/Fe] ranging from 2.1 to 5.3 sigma with respect to the median standard value. Those stars do not show Mg-Al anti-correlation patterns. Incidentally, this sign of the existence of multiple stellar populations is reported firmly for the first time for the bulge globular cluster NGC 6522. The identified low-alpha abundance stars have chemical patterns compatible with those of the thin disc. Their link with massive dwarf galaxies accretion seems unlikely, as larger deviations in alpha abundance and Al would be expected. The vision of a bulge composite nature and a complex formation process is reinforced by our results. The used approach, a multi-method and model-driven analysis of high resolution data seems crucial to reveal this complexity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا