Control of the crystalline orientation of nitrogen-vacancy (NV) defects in diamond is here demonstrated by tuning the temperature of chemical vapor deposition (CVD) growth on a (113)-oriented diamond substrate. We show that preferential alignment of NV defects along the [111] axis is significantly improved when the CVD growth temperature is decreased. This effect is then combined with temperature-dependent incorporation of NV defects during the CVD growth to obtain preferential alignment over dense ensembles of NV defects spatially localized in thin diamond layers. These results demonstrate that growth temperature can be exploited as an additional degree of freedom to engineer optimized diamond samples for quantum sensing applications.