Do you want to publish a course? Click here

Intermittency enhancement in quantum turbulence

374   0   0.0 ( 0 )
 Added by Ladislav Skrbek
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Intermittency is a hallmark of turbulence, which exists not only in turbulent flows of classical viscous fluids but also in flows of quantum fluids such as superfluid $^4$He. Despite the established similarity between turbulence in classical fluids and quasi-classical turbulence in superfluid $^4$He, it has been predicted that intermittency in superfluid $^4$He is temperature dependent and enhanced for certain temperatures, which strikingly contrasts the nearly flow-independent intermittency in classical turbulence. Experimental verification of this theoretical prediction is challenging since it requires well-controlled generation of quantum turbulence in $^4$He and flow measurement tools with high spatial and temporal resolution. Here, we report an experimental study of quantum turbulence generated by towing a grid through a stationary sample of superfluid $^4$He. The decaying turbulent quantum flow is probed by combining a recently developed He$^*_2$ molecular tracer-line tagging velocimetry technique and a traditional second sound attenuation method. We observe quasi-classical decays of turbulent kinetic energy in the normal fluid and of vortex line density in the superfluid component. For several time instants during the decay, we calculate the transverse velocity structure functions. Their scaling exponents, deduced using the extended self-similarity hypothesis, display non-monotonic temperature-dependent intermittency enhancement, in excellent agreement with recent theoretical/numerical study of Biferale et al. [Phys. Rev. Fluids 3, 024605 (2018)].



rate research

Read More

170 - Benjamin Kadoch 2010
The Lagrangian velocity statistics of dissipative drift-wave turbulence are investigated. For large values of the adiabaticity (or small collisionality), the probability density function of the Lagrangian acceleration shows exponential tails, as opposed to the stretched exponential or algebraic tails, generally observed for the highly intermittent acceleration of Navier-Stokes turbulence. This exponential distribution is shown to be a robust feature independent of the Reynolds number. For small adiabaticity, algebraic tails are observed, suggesting the strong influence of point-vortex-like dynamics on the acceleration. A causal connection is found between the shape of the probability density function and the autocorrelation of the norm of the acceleration.
The intermittency of turbulent superfluid helium is explored systematically in a steady wake flow from 1.28 K up to T>2.18K using a local anemometer. This temperature range spans relative densities of superfluid from 96% down to 0%, allowing to test numerical predictions of enhancement or depletion of intermittency at intermediate superfluid fractions. Using the so-called extended self-similarity method, scaling exponents of structure functions have been calculated. No evidence of temperature dependence is found on these scaling exponents in the upper part of the inertial cascade, where turbulence is well developed and fully resolved by the probe. This result supports the picture of a profound analogy between classical and quantum turbulence in their inertial range, including the violation of self-similarities associated with inertial-range intermittency.
We suggest a new approach to probing intermittency corrections to the Kolmogorov law in turbulent flows based on the Auto-Regressive Moving-Average modeling of turbulent time series. We introduce a new index $Upsilon$ that measures the distance from a Kolmogorov-Obukhov model in the Auto-Regressive Moving-Average models space. Applying our analysis to Particle Image Velocimetry and Laser Doppler Velocimetry measurements in a von Karman swirling flow, we show that $Upsilon$ is proportional to the traditional intermittency correction computed from the structure function. Therefore it provides the same information, using much shorter time series. We conclude that $Upsilon$ is a suitable index to reconstruct the spatial intermittency of the dissipation in both numerical and experimental turbulent fields.
New aspects of turbulence are uncovered if one considers flow motion from the perspective of a fluid particle (known as the Lagrangian approach) rather than in terms of a velocity field (the Eulerian viewpoint). Using a new experimental technique, based on the scattering of ultrasounds, we have obtained a direct measurement of particle velocities, resolved at all scales, in a fully turbulent flow. It enables us to approach intermittency in turbulence from a dynamical point of view and to analyze the Lagrangian velocity fluctuations in the framework of random walks. We find experimentally that the elementary steps in the walk have random uncorrelated directions but a magnitude that is extremely long-range correlated in time. Theoretically, we study a Langevin equation that incorporates these features and we show that the resulting dynamics accounts for the observed one- and two-point statistical properties of the Lagrangian velocity fluctuations. Our approach connects the intermittent statistical nature of turbulence to the dynamics of the flow.
We use direct numerical simulations to compute structure functions, scaling exponents, probability density functions and turbulent transport coefficients of passive scalars in turbulent rotating helical and non-helical flows. We show that helicity affects the inertial range scaling of the velocity and of the passive scalar when rotation is present, with a spectral law consistent with $sim k_{perp}^{-1.4}$ for the passive scalar variance spectrum. This scaling law is consistent with the phenomenological argument presented in cite{imazio2011} for rotating non-helical flows, wich states that if energy follows a $E(k)sim k^{-n}$ law, then the passive scalar variance follows a law $V(k) sim k^{-n_{theta}}$ with $n_{theta}=(5-n)/2$. With the second order scaling exponent obtained from this law, and using the Kraichnan model, we obtain anomalous scaling exponents for the passive scalar that are in good agreement with the numerical results. Intermittency of the passive scalar is found to be stronger than in the non-helical rotating case, a result that is also confirmed by stronger non-Gaussian tails in the probability density functions of field increments. Finally, Ficks law is used to compute the effective diffusion coefficients in the directions parallel and perpendicular to the rotation axis. Calculations indicate that horizontal diffusion decreases in the presence of helicity in rotating flows, while vertical diffusion increases. We use a mean field argument to explain this behavior in terms of the amplitude of velocity field fluctuations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا