Do you want to publish a course? Click here

Magnetic Phase Diagram of Light-mediated Spin Structuring in Cold Atoms

342   0   0.0 ( 0 )
 Added by Guillaume Labeyrie
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

When applying a red-detuned retro-reflected laser beam to a large cloud of cold atoms, we observe the spontaneous formation of 2D structures in the transverse plane corresponding to high contrast spatial modulations of both light field and atomic spins. By applying a weak magnetic field, we explore the rich resulting phase space and identify specific phases associated with both dipolar and quadrupolar terms of the atomic magnetic moment. In particular we demonstrate spontaneous structures in optically induced ground state coherences representing magnetic quadrupoles.

rate research

Read More

We present the phase diagram, the underlying stability and magnetic properties as well as the dynamics of nonlinear solitary wave excitations arising in the distinct phases of a harmonically confined spinor $F=1$ Bose-Einstein condensate. Particularly, it is found that nonlinear excitations in the form of dark-dark-bright solitons exist in the antiferromagnetic and in the easy-axis phase of a spinor gas, being generally unstable in the former while possessing stability intervals in the latter phase. Dark-bright-bright solitons can be realized in the polar and the easy-plane phases as unstable and stable configurations respectively; the latter phase can also feature stable dark-dark-dark solitons. Importantly, the persistence of these types of states upon transitioning, by means of tuning the quadratic Zeeman coefficient from one phase to the other is unravelled. Additionally, the spin-mixing dynamics of stable and unstable matter waves is analyzed, revealing among others the coherent evolution of magnetic dark-bright, nematic dark-bright-bright and dark-dark-dark solitons. Moreover, for the unstable cases unmagnetized or magnetic droplet-like configurations and spin-waves consisting of regular and magnetic solitons are seen to dynamically emerge remaining thereafter robust while propagating for extremely large evolution times. Interestingly, exposing spinorial solitons to finite temperatures, their anti-damping in trap oscillation is showcased. It is found that the latter is suppressed for stronger bright soliton component fillings. Our investigations pave the wave for a systematic production and analysis involving spin transfer processes of such waveforms which have been recently realized in ultracold experiments.
Self-organized phases in cold atoms as a result of light-mediated interactions can be induced by coupling to internal or external degrees of the atoms. There has been growing interest in the interaction of internal spin degrees of freedom with the optomechanical dynamics of the external centre-of-mass motion. We present a model for the coupling between magnetic and optomechanical structuring in a $J=1/2 to J=3/2$ system in a single-mirror feedback scheme, being representative for a larger class of diffractively coupled systems such as longitudinally pumped cavities and counter-propagating beam schemes. For negative detunings, a linear stability analysis demonstrates that optical pumping and optomechanical driving cooperate to create magnetic ordering. However, for long-period transmission gratings the magnetic driving will strongly dominate the optomechanical driving, unless one operates very close to the existence range of the magnetic instability. At small lattice periods, in particular at wavelength-scale periods, the optomechanical driving will dominate.
The interaction between an atomic ensemble and a light mode in a high-finesse optical cavity can easily reach the strong-coupling regime, where quantum effects dominate. In this regime, the interaction can be used to generate both atom-light and atom-atom entanglement. We analyze the dominant effects on the collective atomic state and the light field, and derive a unified approach that can account for atomic entanglement induced both by measurements on the light field, and by ignoring the state of the light field altogether. We present analytical expressions for the entanglement induced by the interaction, and determine the conditions that maximize the entanglement-induced gain over the standard quantum limit in quantum sensors and atomic clocks.
Besides being a source of energy, light can also cool gases of atoms down to the lowest temperatures ever measured, where atomic motion almost stops. The research field of cold atoms has emerged as a multidisciplinary one, highly relevant, e.g., for precision measurements, quantum gases, simulations of many-body physics, and atom optics. In this focus article, we present the field as seen in 2015, and emphasise the fundamental role in its development that has been played by mastering.
This article discusses self-organization in cold atoms via light-mediated interactions induced by feedback from a single retro-reflecting mirror. Diffractive dephasing between the pump beam and the spontaneous sidebands selects the lattice period. Spontaneous breaking of the rotational and translational symmetry occur in the 2D plane transverse to the pump. We elucidate how diffractive ripples couple sites on the self-induced atomic lattice. The nonlinear phase shift of the atomic cloud imprinted onto the optical beam is the parameter determining coupling strength. The interaction can be tailored to operate either on external degrees of freedom leading to atomic crystallization for thermal atoms and supersolids for a quantum degenerate gas, or on internal degrees of freedom like populations of the excited state or Zeeman sublevels. Using the light polarization degrees of freedom on the Poincar{e} sphere (helicity and polarization direction), specific irreducible tensor components of the atomic Zeeman states can be coupled leading to spontaneous magnetic ordering of states of dipolar and quadrupolar nature. The requirements for critical interaction strength are compared for the different situations. Connections and extensions to longitudinally pumped cavities, counterpropagating beam schemes and the CARL instability are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا