No Arabic abstract
First-principles calculations of high-temperature spin dynamics in solids in the context of nuclear magnetic resonance (NMR) is a long-standing problem, whose conclusive solution can significantly advance the applications of NMR as a diagnostic tool for material properties. In this work, we propose a new hybrid quantum-classical method for computing NMR free induction decay(FID) for spin $1/2$ lattices. The method is based on the simulations of a finite cluster of spins $1/2$ coupled to an environment of interacting classical spins via a correlation-preserving scheme. Such simulations are shown to lead to accurate FID predictions for one-, two- and three-dimensional lattices with a broad variety of interactions. The accuracy of these predictions can be efficiently estimated by varying the size of quantum clusters used in the simulations.
For closed quantum systems driven away from equilibrium, work is often defined in terms of projective measurements of initial and final energies. This definition leads to statistical distributions of work that satisfy nonequilibrium work and fluctuation relations. While this two-point measurement definition of quantum work can be justified heuristically by appeal to the first law of thermodynamics, its relationship to the classical definition of work has not been carefully examined. In this paper we employ semiclassical methods, combined with numerical simulations of a driven quartic oscillator, to study the correspondence between classical and quantal definitions of work in systems with one degree of freedom. We find that a semiclassical work distribution, built from classical trajectories that connect the initial and final energies, provides an excellent approximation to the quantum work distribution when the trajectories are assigned suitable phases and are allowed to interfere. Neglecting the interferences between trajectories reduces the distribution to that of the corresponding classical process. Hence, in the semiclassical limit, the quantum work distribution converges to the classical distribution, decorated by a quantum interference pattern. We also derive the form of the quantum work distribution at the boundary between classically allowed and forbidden regions, where this distribution tunnels into the forbidden region. Our results clarify how the correspondence principle applies in the context of quantum and classical work distributions, and contribute to the understanding of work and nonequilibrium work relations in the quantum regime.
We study the spectral properties of classical and quantum Markovian processes that are reset at random times to a specific configuration or state with a reset rate that is independent of the current state of the system. We demonstrate that this simple reset dynamics causes a uniform shift in the eigenvalues of the Markov generator, excluding the zero mode corresponding to the stationary state, which has the effect of accelerating or even inducing relaxation to a stationary state. Based on this result, we provide expressions for the stationary state and probability current of the reset process in terms of weighted sums over dynamical modes of the reset-free process. We also discuss the effect of resets on processes that display metastability. We illustrate our results with two classical stochastic processes, the totally asymmetric random walk and the one-dimensional Brownian motion, as well as two quantum models: a particle coherently hopping on a chain and the dissipative transverse field Ising model, known to exhibit metastability.
In a recent milestone experiment, Googles processor Sycamore heralded the era of quantum supremacy by sampling from the output of (pseudo-)random circuits. We show that such random circuits provide tailor-made building blocks for simulating quantum many-body systems on noisy intermediate-scale quantum (NISQ) devices. Specifically, we propose an algorithm consisting of a random circuit followed by a trotterized Hamiltonian time evolution to study hydrodynamics and to extract transport coefficients in the linear response regime. We numerically demonstrate the algorithm by simulating the buildup of spatiotemporal correlation functions in one- and two-dimensional quantum spin systems, where we particularly scrutinize the inevitable impact of errors present in any realistic implementation. Importantly, we find that the hydrodynamic scaling of the correlations is highly robust with respect to the size of the Trotter step, which opens the door to reach nontrivial time scales with a small number of gates. While errors within the random circuit are shown to be irrelevant, we furthermore unveil that meaningful results can be obtained for noisy time evolutions with error rates achievable on near-term hardware. Our work emphasizes the practical relevance of random circuits on NISQ devices beyond the abstract sampling task.
Irradiating a semiconductor with circularly polarized light creates spin-polarized charge carriers. If the material contains atoms with non-zero nuclear spin, they interact with the electron spins via the hyperfine coupling. Here, we consider GaAs/AlGaAs quantum wells, where the conduction-band electron spins interact with three different types of nuclear spins. The hyperfine interaction drives a transfer of spin polarization to the nuclear spins, which therefore acquire a polarization that is comparable to that of the electron spins. In this paper, we analyze the dynamics of the optical pumping process in the presence of an external magnetic field while irradiating a single quantum well with a circularly polarized laser. We measure the time dependence of the photoluminescence polarization to monitor the buildup of the nuclear spin polarization and thus the average hyperfine interaction acting on the electron spins. We present a simple model that adequately describes the dynamics of this process and is in good agreement with the experimental data.
We propose a mechanism for solving the `negative sign problem---the inability to assign non-negative weights to quantum Monte Carlo configurations---for a toy model consisting of a frustrated triplet of spin-$1/2$ particles interacting antiferromagnetically. The introduced technique is based on the systematic grouping of the weights of the recently developed off-diagonal series expansion of the canonical partition function [Phys. Rev. E 96, 063309 (2017)]. We show that while the examined model is easily diagonalizable, the sign problem it encounters can nonetheless be very pronounced, and we offer a systematic mechanism to resolve it. We discuss the generalization of the suggested scheme and the steps required to extend it to more general and larger spin models.