No Arabic abstract
We compute the nuclear spin-orbit coupling from the Skyrme model. Previous attempts to do this were based on the product ansatz, and as such were limited to a system of two well-separated nuclei. Our calculation utilises a new method, and is applicable to the phenomenologically important situation of a single nucleon orbiting a large nucleus. We find that, to second order in perturbation theory, the coefficient of the spin-orbit coupling induced by pion field interactions has the wrong sign, but as the strength of the pion-nucleon interactions increases the correct sign is recovered non-perturbatively.
We present a first attempt to determine nucleon-nucleon potentials in the parity-odd sector, which appear in 1P1, 3P0, 3P1, 3P2-3F2 channels, in Nf=2 lattice QCD simulations. These potentials are constructed from the Nambu-Bethe-Salpeter wave functions for J^P=0^-, 1^- and 2^-, which correspond to A1^-, T1^- and T2^- + E^- representation of the cubic group, respectively. We have found a large and attractive spin-orbit potential VLS(r) in the isospin-triplet channel, which is qualitatively consistent with the phenomenological determination from the experimental scattering phase shifts. The potentials obtained from lattice QCD are used to calculate the scattering phase shifts in 1P1, 3P0, 3P1 and 3P2-3F2 channels. The strong attractive spin-orbit force and a weak repulsive central force in spin-triplet P-wave channels lead to an attraction in the 3P2 channel, which is related to the P-wave neutron paring in neutron stars.
In the Skyrme model atomic nuclei are modelled as quantized soliton solutions in a nonlinear field theory of pions. The mass number is given by the conserved topological charge $B$ of the solitons. Conventionally, Skyrmions are semiclassically quantized within the rigid body approach. In this approach Skyrmions are effectively treated as rigid rotors in space and isospace that is it is assumed that Skyrmions do not deform at all when they spin and isospin. This approximation resulted in qualitative and encouraging quantitative agreement with experimental nuclear physics data. In this talk, we point out that the theoretical agreement could be further improved by allowing classical Skyrmion solutions to deform as they spin and isospin. As a first step towards a better understanding of how nuclei can be approximated by classically spinning and isospinning soliton solutions, we study how classical Skyrmion solutions of topological charges $B=1-4,8$ deform when classical isospin is added.
We derive the nucleon-nucleon isoscalar spin-orbit potential from the Skyrme model and find good agreement with the Paris potential. This solves a problem that has been open for more than thirty years and gives a new geometric understanding of the spin-orbit force. Our calculation is based on the dipole approximation to skyrmion dynamics and higher order perturbation theory.
We consider the rigid body quantization of Skyrmions with topological charges 1 to 8, as approximated by the rational map ansatz. Novel, general expressions for the elements of the inertia tensors, in terms of the approximating rational map, are presented and are used to determine the kinetic energy contribution to the total energy of the ground and excited states of the quantized Skyrmions. Our results are compared to the experimentally determined energy levels of the corresponding nuclei, and the energies and spins of a few as yet unobserved states are predicted.
Nuclear binding energies are investigated in two variants of the Skyrme model: the first replaces the usual Skyrme term with a term that is sixth order in derivatives, and the second includes a potential that is quartic in the pion fields. Solitons in the first model are shown to deviate significantly from ansatze previously assumed in the literature. The binding energies obtained in both models are lower than those obtained from the standard Skyrme model, and those obtained in the second model are close to the experimental values.