Topological signatures of the coexistence of antiferromagnetism and odd-parity spin-triplet superconductivity


Abstract in English

Strongly correlated systems exhibit a rich phenomenology due to the antagonism of a diversity of ordered phases. The aftermath of this interplay can lead to a coexistence which takes place at a microscopic level, or, a phase separation in which non-overlapping single-order domains extend throughout the material. In most cases it appears experimentally challenging to disentangle the two scenarios, unless, there exist robust and measurable properties particular to only one of the two types of coexistence. This is for instance the case when the type of coexistence decides on the appearance of topologically protected excitations, such as, Majorana fermions. In this work, we explore a concrete example falling into this category of systems, and specifically, we investigate one-dimensional odd-parity spin-triplet superconductors in the presence of antiferromagnetism. We determine the symmetry conditions for the occurrence of Majorana edge states and explore their response to variations of the strength and orientation of the antiferromagnetic field $boldsymbol{M}$, as well as, the spin structure of the Cooper pairs controlled by the so-called $boldsymbol{d}$-vector.

Download