Do you want to publish a course? Click here

Manipulating quantum materials with quantum light

265   0   0.0 ( 0 )
 Added by Martin Kiffner
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that the macroscopic magnetic and electronic properties of strongly correlated electron systems can be manipulated by coupling them to a cavity mode. As a paradigmatic example we consider the Fermi-Hubbard model and find that the electron-cavity coupling enhances the magnetic interaction between the electron spins in the ground-state manifold. At half filling this effect can be observed by a change in the magnetic susceptibility. At less than half filling, the cavity introduces a next-nearest neighbour hopping and mediates a long-range electron-electron interaction between distant sites. We study the ground state properties with Tensor Network methods and find that the cavity coupling can induce a new phase characterized by a momentum-space pairing effect for electrons.



rate research

Read More

Here we present an efficient quantum algorithm to generate an equivalent many-body state to Laughlins $ u=1/3$ fractional quantum Hall state on a digitized quantum computer. Our algorithm only uses quantum gates acting on neighboring qubits in a quasi-one-dimensional setting, and its circuit depth is linear in the number of qubits, i.e., the number of Landau orbitals in the second quantized picture. We identify correlation functions that serve as signatures of the Laughlin state and discuss how to obtain them on a quantum computer. We also discuss a generalization of the algorithm for creating quasiparticles in the Laughlin state. This paves the way for several important studies, including quantum simulation of nonequilibrium dynamics and braiding of quasiparticles in quantum Hall states.
We show that strong electron-electron interactions in cavity-coupled quantum materials can enable collectively enhanced light-matter interactions with ultrastrong effective coupling strengths. As a paradigmatic example we consider a Fermi-Hubbard model coupled to a single-mode cavity and find that resonant electron-cavity interactions result in the formation of a quasi-continuum of polariton branches. The vacuum Rabi splitting of the two outermost branches is collectively enhanced and scales with $g_{text{eff}}proptosqrt{2L}$, where $L$ is the number of electronic sites, and the maximal achievable value for $g_{text{eff}}$ is determined by the volume of the unit cell of the crystal. We find that $g_{text{eff}}$ for existing quantum materials can by far exceed the width of the first excited Hubbard band. This effect can be experimentally observed via measurements of the optical conductivity and does not require ultra-strong coupling on the single-electron level. Quantum correlations in the electronic ground state as well as the microscopic nature of the light-matter interaction enhance the collective light-matter interaction compared to an ensemble of independent two-level atoms interacting with a cavity mode.
A quantitative and predictive theory of quantum light-matter interactions in ultra thin materials involves several fundamental challenges. Any realistic model must simultaneously account for the ultra-confined plasmonic modes and their quantization in the presence of losses, while describing the electronic states from first principles. Herein we develop such a framework by combining density functional theory (DFT) with macroscopic quantum electrodynamics, which we use to show Purcell enhancements reaching $10^7$ for intersubband transitions in few-layer transition metal dichalcogenides sandwiched between graphene and a perfect conductor. The general validity of our methodology allows us to put several common approximation paradigms to quantitative test, namely the dipole-approximation, the use of 1D quantum well model wave functions, and the Fermis Golden rule. The analysis shows that the choice of wave functions is of particular importance. Our work lays the foundation for practical ab initio-based quantum treatments of light matter interactions in realistic nanostructured materials.
Optical pulses are routinely used to drive dynamical changes in the properties of solids. In quantum materials, many new phenomena have been discovered, including ultrafast transitions between electronic phases, switching of ferroic orders and nonequilibrium emergent behaviors such as photo-induced superconductivity. Understanding the underlying non-equilibrium physics requires detailed measurements of multiple microscopic degrees of freedom at ultrafast time resolution. Femtosecond x-rays are key to this endeavor, as they can access the dynamics of structural, electronic and magnetic degrees of freedom. Here, we cover a series of representative experimental studies in which ultrashort x-ray pulses from free electron lasers have been used, opening up new horizons for materials research.
We present a tree-tensor-network-based method to study strongly correlated systems with nonlocal interactions in higher dimensions. Although the momentum-space and quantum-chemist
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا