Do you want to publish a course? Click here

Electromagnetic quasinormal modes of five-dimensional topological black holes

75   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We calculate exactly the QNF of the vector type and scalar type electromagnetic fields propagating on a family of five-dimensional topological black holes. To get a discrete spectrum of quasinormal frequencies for the scalar type electromagnetic field we find that it is necessary to change the boundary condition usually imposed at the asymptotic region. Furthermore for the vector type electromagnetic field we impose the usual boundary condition at the asymptotic region and we discuss the existence of unstable quasinormal modes in the five-dimensional topological black holes.



rate research

Read More

We study scalar perturbations of four dimensional topological nonlinear charged Lifshitz black holes with spherical and plane transverse sections, and we find numerically the quasinormal modes for scalar fields. Then, we study the stability of these black holes under massive and massless scalar field perturbations. We focus our study on the dependence of the dynamical exponent, the nonlinear exponent, the angular momentum and the mass of the scalar field in the modes. It is found that the modes are overdamped depending strongly on the dynamical exponent and the angular momentum of the scalar field for a spherical transverse section. In constrast, for plane transverse sections the modes are always overdamped.
65 - N. Breton , L. A. Lopez 2016
The expressions for the quasinormal modes (QNMs) of black holes with nonlinear electrodynamics, calculated in the eikonal approximation, are presented. In the eikonal limit QNMs of black holes are determined by the parameters of the circular null geodesics. The unstable circular null orbits are derived from the effective metric that is the one obeyed by light rays under the influence of a nonlinear electromagnetic field. As an illustration we calculate the QNMs of four nonlinear electromagnetic black holes, two singular and two regular, namely from Euler-Heisenberg and Born-Infeld theories, for singular, and the magnetic Bardeen black hole and the one derived by Bronnikov for regular ones. Comparison is shown with the QNMs of the linear electromagnetic counterpart, their Reissner-Nordstr{o}m black hole.
We study charged fermionic perturbations in the background of two-dimensional charged Dilatonic black holes, and we present the exact Dirac quasinormal modes. Also, we study the stability of these black holes under charged fermionic perturbations.
183 - A. Lopez-Ortega 2014
Motivated by the recent interest in the study of the spacetimes that are asymptotically Lifshitz and in order to extend some previous results, we calculate exactly the quasinormal frequencies of the electromagnetic field in a D-dimensional asymptotically Lifshitz black hole. Based on the values obtained for the quasinormal frequencies we discuss the classical stability of the quasinormal modes. We also study whether the electromagnetic field possesses unstable modes in the D-dimensional Lifshitz spacetime.
Quasinormal modes have played a prominent role in the discussion of perturbations of black holes, and the question arises whether they are as significant as normal modes are for self adjoint systems, such as harmonic oscillators. They can be significant in two ways: Individual modes may dominate the time evolution of some perturbation, and a whole set of them could be used to completely describe this time evolution. It is known that quasinormal modes of black holes have the first property, but not the second. It has recently been suggested that a discontinuity in the underlying system would make the corresponding set of quasinormal modes complete. We therefore turn the Regge-Wheeler potential, which describes perturbations of Schwarzschild black holes, into a series of step potentials, hoping to obtain a set of quasinormal modes which shows both of the above properties. This hope proves to be futile, though: The resulting set of modes appears to be complete, but it does not contain any individual mode any more which is directly obvious in the time evolution of initial data. Even worse: The quasinormal frequencies obtained in this way seem to be extremely sensitive to very small changes in the underlying potential. The question arises whether - and how - it is possible to make any definite statements about the significance of quasinormal modes of black holes at all, and whether it could be possible to obtain a set of quasinormal modes with the desired properties in another way.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا