Let $C$ be a smooth, absolutely irreducible genus-$3$ curve over a number field $M$. Suppose that the Jacobian of $C$ has complex multiplication by a sextic CM-field $K$. Suppose further that $K$ contains no imaginary quadratic subfield. We give a bound on the primes $mathfrak{p}$ of $M$ such that the stable reduction of $C$ at $mathfrak{p}$ contains three irreducible components of genus $1$.
We give bounds on the primes of geometric bad reduction for curves of genus three of primitive CM type in terms of the CM orders. In the case of genus one, there are no primes of geometric bad reduction because CM elliptic curves are CM abelian varieties, which have potential good reduction everywhere. However, for genus at least two, the curve can have bad reduction at a prime although the Jacobian has good reduction. Goren and Lauter gave the first bound in the case of genus two. In the cases of hyperelliptic and Picard curves, our results imply bounds on primes appearing in the denominators of invariants and class polynomials, which are important for algorithmic construction of curves with given characteristic polynomials over finite fields.
Inspired by methods of N. P. Smart, we describe an algorithm to determine all Picard curves over Q with good reduction away from 3, up to Q-isomorphism. A correspondence between the isomorphism classes of such curves and certain quintic binary forms possessing a rational linear factor is established. An exhaustive list of integral models is determined, and an application to a question of Ihara is discussed.
In this paper we present an algorithm for computing Hecke eigensystems of Hilbert-Siegel cusp forms over real quadratic fields of narrow class number one. We give some illustrative examples using the quadratic field $Q(sqrt{5})$. In those examples, w
e identify Hilbert-Siegel eigenforms that are possible lifts from Hilbert eigenforms.
Most hypersurfaces in projective space are irreducible, and rather precise estimates are known for the probability that a random hypersurface over a finite field is reducible. This paper considers the parametrization of space curves by the appropriate Chow variety, and provides bounds on the probability that a random curve over a finite field is reducible.