Do you want to publish a course? Click here

Electroluminescence TPCs at the thermal diffusion limit

185   0   0.0 ( 0 )
 Added by Luis Fernandes
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The NEXT experiment aims at searching for the hypothetical neutrinoless double-beta decay from the ${}^{136}$Xe isotope using a high-purity xenon TPC. Efficient discrimination of the events through pattern recognition of the topology of primary ionisation tracks is a major requirement for the experiment. However, it is limited by the diffusion of electrons. It is known that the addition of a small fraction of a molecular gas to xenon reduces electron diffusion. On the other hand, the electroluminescence (EL) yield drops and the achievable energy resolution may be compromised. We have studied the effect of adding several molecular gases to xenon (CO${}_{2}$, CH${}_{4}$ and CF${}_{4}$) on the EL yield and energy resolution obtained in a small prototype of driftless gas proportional scintillation counter. We have compared our results on the scintillation characteristics (EL yield and energy resolution) with a microscopic simulation, obtaining the diffusion coefficients in those conditions as well. Accordingly, electron diffusion may be reduced from about 10 mm/$sqrt{mathrm{m}}$ for pure xenon down to 2.5 mm/$sqrt{mathrm{m}}$ using additive concentrations of about 0.05%, 0.2% and 0.02% for CO${}_{2}$, CH${}_{4}$ and CF${}_{4}$, respectively. Our results show that CF${}_{4}$ admixtures present the highest EL yield in those conditions, but very poor energy resolution as a result of huge fluctuations observed in the EL formation. CH${}_{4}$ presents the best energy resolution despite the EL yield being the lowest. The results obtained with xenon admixtures are extrapolated to the operational conditions of the NEXT-100 TPC. CO${}_{2}$ and CH${}_{4}$ show potential as molecular additives in a large xenon TPC, CH${}_{4}$ showing the best performance and stability to be used in the NEXT-100 TPC, with an extrapolated energy resolution of 0.4% at 2.45 MeV for concentrations below 0.4%.



rate research

Read More

80 - Michel Sorel 2019
Xenon time projection chambers (TPCs) have become a well-established detection technology for neutrinoless double beta decay searches in $^{136}$Xe. I discuss the motivations for this choice. I describe the status and prospects of both liquid and gaseous xenon TPC projects for double beta decay.
228 - G. Giroux , M. Auger , D. Franco 2013
A novel light detection scheme has been tested for use in medium-pressure gas TPCs, in view of rare events searches in low energy particle physics. It has the advantage of minimal interference with the ionization collection system, used for track imaging. It provides an absolute time reference, which allows an absolute determination of the Z coordinate of events, along the direction of the drift field. This makes possible a fiducial cut along the Z-axis, allowing to reduce the background from the ends of the drift volume.
The krypton electroluminescence yield was studied, at room temperature, as a function of electric field in the gas scintillation gap. A large area avalanche photodiode has been used to allow the simultaneous detection of the electroluminescence pulses as well as the direct interaction of x-rays, the latter being used as a reference for the calculation of the number of charge carriers produced by the electroluminescence pulses and, thus, the determination of the number of photons impinging the photodiode. An amplification parameter of 113 photons per kV per drifting electron and a scintillation threshold of 2.7 Td ( 0.7 kV/cm/bar at 293 K ) was obtained, in good agreement with the simulation data reported in the literature. On the other hand, the ionisation threshold in krypton was found to be around 13.5 Td (3.4 kV/cm/bar), less than what had been obtained by the most recent simulation work-package. The krypton amplification parameter is about 80% and 140% of those measured for xenon and argon, respectively. The electroluminescence yield in krypton is of great importance for modeling krypton-based double-phase or high-pressure gas detectors, which may be used in future rare event detection experiments.
Within the framework of xenon-based double beta decay experiments, we propose the possibility to improve the background rejection of an electroluminescent Time Projection Chamber (EL TPC) by reducing the diffusion of the drifting electrons while keeping nearly intact the energy resolution of a pure xenon EL TPC. Based on state-of-the-art microscopic simulations, a substantial addition of helium, around 10 or 15~%, may reduce drastically the transverse diffusion down to 2.5~mm/$sqrt{mathrm{m}}$ from the 10.5~mm/$sqrt{mathrm{m}}$ of pure xenon. The longitudinal diffusion remains around 4~mm/$sqrt{mathrm{m}}$. Light production studies have been performed as well. They show that the relative variation in energy resolution introduced by such a change does not exceed a few percent, which leaves the energy resolution practically unchanged. The technical caveats of using photomultipliers close to an helium atmosphere are also discussed in detail.
The MicroBooNE liquid argon time projection chamber located at Fermilab is a neutrino experiment dedicated to the study of short-baseline oscillations, the measurements of neutrino cross sections in liquid argon, and to the research and development of this novel detector technology. Accurate and precise measurements of calorimetry are essential to the event reconstruction and are achieved by leveraging the TPC to measure deposited energy per unit length along the particle trajectory, with mm resolution. We describe the non-uniform calorimetric reconstruction performance in the detector, showing dependence on the angle of the particle trajectory. Such non-uniform reconstruction directly affects the performance of the particle identification algorithms which infer particle type from calorimetric measurements. This work presents a new particle identification method which accounts for and effectively addresses such non-uniformity. The newly developed method shows improved performance compared to previous algorithms, illustrated by a 94% proton selection efficiency and a 10% muon mis-identification rate, with a fairly loose selection of tracks performed on beam data. The performance is further demonstrated by identifying exclusive final states in $ u_{mu} CC$ interactions. While developed using MicroBooNE data and simulation, this method is easily applicable to future LArTPC experiments, such as SBND, ICARUS, and DUNE.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا