No Arabic abstract
PIP-II is the Fermilabs flagship project for providing powerful, high-intensity proton beams to the laboratorys experiments. The heart of PIP-II is an 800-MeV superconducting linac accelerator. It will be located in a new tunnel with new service buildings and connected to the present Booster through a new transfer line. To support the design of civil engineering and mechanical integration, this paper provides preliminary estimation of radiation level in the gallery at an operational beam loss limit of 0.1 W/m, by means of Monte Carlo calculations with FLUKA and MARS15 codes.
A CW-compatible, pulsed H- superconducting linac PIP-II is being planned to upgrade Fermilabs injection complex. To validate the front-end concept, a test accelerator (The PIP-II Injector Test, formerly known as PXIE) is under construction. The warm part of this accelerator comprises a 10 mA DC, 30 keV H- ion source, a 2 m-long Low Energy Beam Transport (LEBT), a 2.1 MeV Radio Frequency Quadrupole (RFQ) capable of operation in Continuous Wave (CW) mode, and a 10 m-long Medium Energy Beam Transport (MEBT). The paper will report on the installation of the RFQ and the first sections of the MEBT and related mechanical design considerations.
We report results of the beam commissioning and first operation of the 1.3 GHz superconducting RF electron linear accelerator at Fermilab Accelerator Science and Technology (FAST) facility. Construction of the linac was completed and the machine was commissioned with beam in 2017. The maximum total beam energy of about 300 MeV was achieved with the record energy gain of 250 MeV in the ILC-type SRF cryomodule. The photoinjector was tuned to produce trains of 200 pC bunches with a frequency of 3 MHz at a repetition rate of 1 Hz. This report describes the aspects of machine commissioning such as tuning of the SRF cryomodule and beam optics optimization. We also present highlights of an experimental program carried out parasitically during the two-month run, including studies of wake-fields, and advanced beam phase space manipulation.
FAST linear accelerator has been commissioned in 2017. Experimental program of the facility requires high quality beams with well-defined properties. Solenoidal fields at photoinjector, laser spot shape, space charge forces and other effects can distort beam distribution and introduce coupling. This work presents results of a beam phase space tomography for a coupled 4D case. Beam was rotated in two planes with seven quads by 180 degrees and images from YaG screen were used to perform SVD based reconstruction of the beam distribution.
Comprehensive studies with the MARS15(2016) Monte-Carlo code are described on evaluation of prompt and residual radiation levels induced by nominal and accidental beam losses in the 5-MW, 2-GeV European Spallation Source (ESS) Linac. These are to provide a basis for radiation shielding design verification through the accelerator complex. The calculation model is based on the latest engineering design and includes a sophisticated algorithm for particle tracking in the machine RF cavities as well as a well-established model of the beam loss. Substantial efforts were put in solving the deep-penetration problem for the thick shielding around the tunnel with numerous complex penetrations. It allowed us to study in detail not only the prompt dose, but also component and air activation, radiation loads on the soil outside the tunnel, and skyshine studies for the complicated 3-D surface above the machine. Among the other things, the newest features in MARS15 (2016), such as a ROOT-based beamline builder and a TENDL-based event generator for nuclear interactions below 100 MeV, were very useful in this challenging application.
In synchrotron machines, the beam extraction is accomplished by a combination of septa and kicker magnets which deflect the beam from an accelerator into another. Ideally the kicker field must rise/fall in between the beam bunches. However, in reality, an intentional beam-free time region (aka notch) is created on the beam pulse to assure that the beam can be extracted with minimal losses. In the case of the Fermilab Booster, the notch is created in the ring near injection energy by the use of fast kickers which deposit the beam in a shielded collimation region within the accelerator tunnel. With increasing beam power it is desirable to create this notch at the lowest possible energy to minimize activation. The Fermilab Proton Improvement Plan (PIP) initiated an R&D project to build a laser system to create the notch within a linac beam pulse at 750 keV. This talk will describe the concept for the laser notcher and discuss our current status, commissioning results, and future plans.