No Arabic abstract
A promising route to novel quantum technologies are hybrid quantum systems, which combine the advantages of several individual quantum systems. We have realized a hybrid atomic-mechanical experiment consisting of a SiN membrane oscillator cryogenically precooled to 500 mK and optically coupled to a cloud of laser cooled Rb atoms. Here, we demonstrate active feedback cooling of the oscillator to a minimum mode occupation of n = 16 corresponding to a mode temperature of T = 200 {mu}K. Furthermore, we characterize in detail the coupling of the membrane to the atoms by means of sympathetic cooling. By simultaneously applying both cooling methods we demonstrate the possibility of preparing the oscillator near the motional ground state while it is coupled to the atoms. Realistic modifications of our setup will enable the creation of a ground state hybrid quantum system, which opens the door for coherent quantum state transfer, teleportation and entanglement as well as quantum enhanced sensing applications.
Sympathetic cooling with ultracold atoms and atomic ions enables ultralow temperatures in systems where direct laser or evaporative cooling is not possible. It has so far been limited to the cooling of other microscopic particles, with masses up to $90$ times larger than that of the coolant atom. Here we use ultracold atoms to sympathetically cool the vibrations of a Si$_3$N$_4$ nanomembrane, whose mass exceeds that of the atomic ensemble by a factor of $10^{10}$. The coupling of atomic and membrane vibrations is mediated by laser light over a macroscopic distance and enhanced by placing the membrane in an optical cavity. We observe cooling of the membrane vibrations from room temperature to $650pm 230$ mK, exploiting the large atom-membrane cooperativity of our hybrid optomechanical system. Our scheme enables ground-state cooling and quantum control of low-frequency oscillators such as nanomembranes or levitated nanoparticles, in a regime where purely optomechanical techniques cannot reach the ground state.
We propose a domino-cooling method to realize simultaneous ground-state cooling of a coupled mechanical-resonator chain through an optomechanical cavity working in the unresolved-sideband regime. This domino-effect cooling is realized by combining the cold-damping feedback on the first mechanical resonator with nearest-neighbor couplings between other neighboring mechanical resonators. We obtain analytical results for the effective susceptibilities, noise spectra, final mean phonon numbers, and cooling rates of these mechanical resonators, and find the optimal-cooling condition for these resonators. Particularly, we analyze a two-mechanical-resonator case and find that by appropriately engineering either the laser power or the feedback, a flexible switch between symmetric and asymmetric ground-state cooling can be achieved. This could be used for preparing symmetric quantum states in mechanical systems. We also simulate the cooling performance of a coupled $N$-mechanical-resonator chain and confirm that these resonators can be simultaneously cooled to their quantum ground states in the unresolved-sideband regime. Under proper parameter conditions, the cooling of the mechanical-resonator chain shows a temperature gradient along the chain. This study opens a route to quantum manipulation of multiple mechanical resonators in the bad-cavity regime.
We report on use of a radiation pressure induced restoring force, the optical spring effect, to optically dilute the mechanical damping of a 1 gram suspended mirror, which is then cooled by active feedback (cold damping). Optical dilution relaxes the limit on cooling imposed by mechanical losses, allowing the oscillator mode to reach a minimum temperature of 6.9 mK, a factor of ~40000 below the environmental temperature. A further advantage of the optical spring effect is that it can increase the number of oscillations before decoherence by several orders of magnitude. In the present experiment we infer an increase in the dynamical lifetime of the state by a factor of ~200.
A mixed system of cooled and trapped, ions and atoms, paves the way for ion assisted cold chemistry and novel many body studies. Due to the different individual trapping mechanisms, trapped atoms are significantly colder than trapped ions, therefore in the combined system, the strong binary ion$-$atom interaction results in heat flow from ions to atoms. Conversely, trapped ions can also get collisionally heated by the cold atoms, making the resulting equilibrium between ions and atoms intriguing. Here we experimentally demonstrate, Rubidium ions (Rb$^+$) cool in contact with magneto-optically trapped (MOT) Rb atoms, contrary to the general expectation of ion heating for equal ion and atom masses. The cooling mechanism is explained theoretically and substantiated with numerical simulations. The importance of resonant charge exchange (RCx) collisions, which allows swap cooling of ions with atoms, wherein a single glancing collision event brings a fast ion to rest, is discussed.
We consider an optical probe that interacts with an ensemble of rare earth ions doping a materialin the shape of a cantilever. By optical spectral hole burning, the inhomogeneously broadenedtransition in the ions is prepared to transmit the probe field within a narrow window, but bendingof the cantilever causes strain in the material which shifts the ion resonances. The motion of thecantilever may thus be registered by the phase shift of the probe. By continuously measuringthe optical field we induce a rapid reduction of the position and momentum uncertainty of thecantilever. Doing so, the probing extracts entropy and thus effectively cools the thermal state ofmotion towards a known, conditional oscillatory motion with strongly reduced thermal fluctuations.Moreover, as the optical probe provides a force on the resonator proportional to its intensity, it ispossible to exploit the phase shift measurements in order to create an active feedback loop, whicheliminates the thermal fluctuations of the resonator. We describe this system theoretically, andprovide numerical simulations which demonstrate the rapid reduction in resonator position andmomentum uncertainty, as well as the implementation of the active cooling protocol.