Do you want to publish a course? Click here

Additive perfect codes in Doob graphs

73   0   0.0 ( 0 )
 Added by Denis Krotov
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

The Doob graph $D(m,n)$ is the Cartesian product of $m>0$ copies of the Shrikhande graph and $n$ copies of the complete graph of order $4$. Naturally, $D(m,n)$ can be represented as a Cayley graph on the additive group $(Z_4^2)^m times (Z_2^2)^{n} times Z_4^{n}$, where $n+n=n$. A set of vertices of $D(m,n)$ is called an additive code if it forms a subgroup of this group. We construct a $3$-parameter class of additive perfect codes in Doob graphs and show that the known necessary conditions of the existence of additive $1$-perfect codes in $D(m,n+n)$ are sufficient. Additionally, two quasi-cyclic additive $1$-perfect codes are constructed in $D(155,0+31)$ and $D(2667,0+127)$.



rate research

Read More

267 - J. Rifa , L. Ronquillo 2010
Product perfect codes have been proven to enhance the performance of the F5 steganographic method, whereas perfect Z2Z4-linear codes have been recently introduced as an efficient way to embed data, conforming to the +/-1-steganography. In this paper, we present two steganographic methods. On the one hand, a generalization of product perfect codes is made. On the other hand, this generalization is applied to perfect Z2Z4-linear codes. Finally, the performance of the proposed methods is evaluated and compared with those of the aforementioned schemes.
120 - J. Pujol , J. Rif`a , L. Ronquillo 2009
The well known Plotkin construction is, in the current paper, generalized and used to yield new families of Z2Z4-additive codes, whose length, dimension as well as minimum distance are studied. These new constructions enable us to obtain families of Z2Z4-additive codes such that, under the Gray map, the corresponding binary codes have the same parameters and properties as the usual binary linear Reed-Muller codes. Moreover, the first family is the usual binary linear Reed-Muller family.
122 - Denis S. Krotov 2019
The Doob scheme $D(m,n+n)$ is a metric association scheme defined on $E_4^m times F_4^{n}times Z_4^{n}$, where $E_4=GR(4^2)$ or, alternatively, on $Z_4^{2m} times Z_2^{2n} times Z_4^{n}$. We prove the MacWilliams identities connecting the weight distributions of a linear or additive code and its dual. In particular, for each case, we determine the dual scheme, on the same set but with different metric, such that the weight distribution of an additive code $C$ in the Doob scheme $D(m,n+n)$ is related by the MacWilliams identities with the weight distribution of the dual code $C^perp$ in the dual scheme. We note that in the case of a linear code $C$ in $E_4^m times F_4^{n}$, the weight distributions of $C$ and $C^perp$ in the same scheme are also connected.
In this paper, two different Gray-like maps from $Z_p^alphatimes Z_{p^k}^beta$, where $p$ is prime, to $Z_p^n$, $n={alpha+beta p^{k-1}}$, denoted by $phi$ and $Phi$, respectively, are presented. We have determined the connection between the weight enumerators among the image codes under these two mappings. We show that if $C$ is a $Z_p Z_{p^k}$-additive code, and $C^bot$ is its dual, then the weight enumerators of the image $p$-ary codes $phi(C)$ and $Phi(C^bot)$ are formally dual. This is a partial generalization of [On $Z_{2^k}$-dual binary codes, arXiv:math/0509325], and the result is generalized to odd characteristic $p$ and mixed alphabet. Additionally, a construction of $1$-perfect additive codes in the mixed $Z_p Z_{p^2} ... Z_{p^k}$ alphabet is given.
We consider DNA codes based on the nearest-neighbor (stem) similarity model which adequately reflects the hybridization potential of two DNA sequences. Our aim is to present a survey of bounds on the rate of DNA codes with respect to a thermodynamically motivated similarity measure called an additive stem similarity. These results yield a method to analyze and compare known samples of the nearest neighbor thermodynamic weights associated to stacked pairs that occurred in DNA secondary structures.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا