Controlling spectral energies of all harmonics in programmable way using time-domain digital coding metasurface


Abstract in English

Modern wireless communication is one of the most important information technologies, but its system architecture has been unchanged for many years. Here, we propose a much simpler architecture for wireless communication systems based on metasurface. We firstly propose a time-domain digital coding metasurface to reach a simple but efficient method to manipulate spectral distributions of harmonics. Under dynamic modulations of phases on surface reflectivity, we could achieve accurate controls to different harmonics in a programmable way to reach many unusual functions like frequency cloaking and velocity illusion, owing to the temporal gradient introduced by digital signals encoded by 0 and 1 sequences. A theoretical model is presented and experimentally validated to reveal the nonlinear process. Based on the time-domain digital coding metasurface, we propose and realize a new wireless communication system in binary frequency-shift keying (BFSK) frame, which has much more simplified architecture than the traditional BFSK with excellent performance for real-time message transmission. The presented work, from new concept to new system, will find important applications in modern information technologies.

Download